

Specific heat in the mixed state of non-magnetic borocarbides

D. Lipp ^a, S.-L. Drechsler ^{b,1}, J. Freudenberger ^b, G. Fuchs ^b, K. Nenkov ^b, K.-H. Müller ^b, M. Schneider ^c, and A. Gladun ^c

^a Institut für Halbleiter- und Mikrosystemtechnik, Technische Universität Dresden, D-01062 Dresden, Germany

^b Leibniz-Institut für Festkörper- und Werkstoffforschung e. V., D-01171 Dresden, Postfach 270116, Germany

^c Institut für Tieftemperaturphysik, Technische Universität Dresden, D-01062 Dresden, Germany

Abstract

The temperature and magnetic field dependence of the specific heat $c_p(T, H)$ in the superconducting (sc) mixed state has been measured for polycrystalline $Y_xLu_{1-x}Ni_2B_2C$ and $Y(Ni_{1-y}Pt_y)_2B_2C$ samples. The deviations from the usual linear-in- H law of the linear-in- T electronic specific heat contribution $\gamma(H) \cdot T$ can be possibly ascribed to unconventional pairing. The $\gamma(H)$ dependence is discussed in the unitary d -wave scenario as well as in the intermediate transition region in between dirty and clean s -wave limits. From a consideration of $\gamma(H)$ data, unconventional pairing cannot be ruled out.

Key words: unconventional superconductivity; borocarbides; specific heat

The unusual shape of the upper critical field $H_{c2}(T)$ near T_c , the nearly T^3 scaling of the electronic specific heat $c_{es}(T)$ in the sc state and the negative curvature of $\gamma(H)$ point to a possible unconventional ordering parameter in borocarbides [1,2]. The observed $\gamma(H) \propto \sqrt{H}$ -law for YNi_2B_2C and $LuNi_2B_2C$ was regarded initially as evidence for d -wave pairing [3,4], the disorder related transition from a \sqrt{H} to a linear-in- H dependence was subsequently used to rule out d -wave superconductivity in non-magnetic borocarbides [5]. Nevertheless, we discuss the deviation from the linear $\gamma(H)$ behaviour in the framework of unconventional superconductivity. It has been recently pointed out that possibly an unconventional mechanism is responsible for superconductivity in borocarbides [6,7].

Polycrystalline $Y_xLu_{1-x}Ni_2B_2C$ with $x = 0, 0.25, 0.5, 0.75, 1$, and $Y(Ni_{1-y}Pt_y)_2B_2C$ samples with $y = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5$, and 0.75 were prepared by a standard arc melting technique. A detailed description of the sample preparation is given in Ref. [2]. The specific heat was measured between $4.2\text{ K} \leq T \leq 20\text{ K}$ increasing the temperature after the samples were

cooled down from $T > T_c$ in applied fields $\mu_0H \leq 8\text{ T}$ using a quasi-adiabatic step heating technique.

The $\gamma(H)$ -values obtained by extrapolating c_p/T vs. T^2 curves are represented in Fig. 1. For all samples

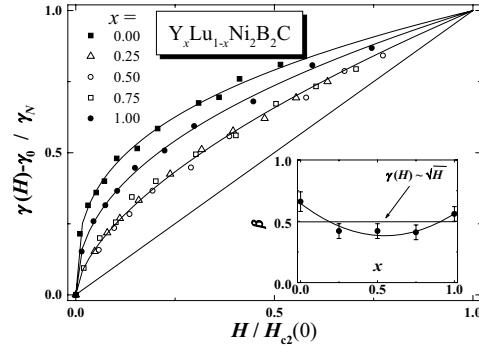


Fig. 1. Magnetic field dependence of the specific heat contribution $\gamma(H)$ of the vortex core electrons in the mixed state ($H \leq H_{c2}$) normalized by the Sommerfeld value γ_N and $H_{c2}(0)$ for $Y_xLu_{1-x}Ni_2B_2C$. Residual $\gamma_0 = \gamma(H = 0)$ values have been subtracted. The inset shows the curvature parameters $\beta(x)$ according to $\gamma(H) - \gamma_0 \propto H^{1-\beta}$.

¹ E-mail: drechsler@ifw-dresden.de

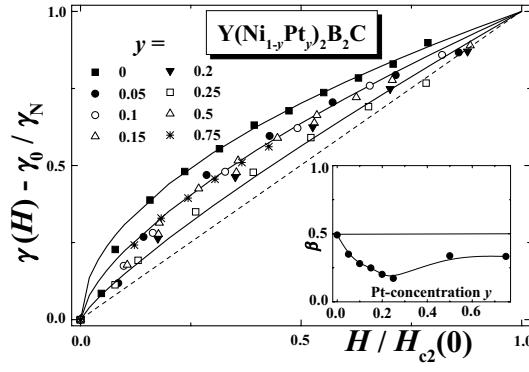


Fig. 2. Field dependence of the specific heat contribution $\gamma(H)$ in the mixed state for $\text{Y}(\text{Ni}_{1-y}\text{Pt}_y)_2\text{B}_2\text{C}$. The inset shows the curvature parameters $\beta(y)$ according to $\gamma(H) - \gamma_0 \propto H^{1-\beta}$.

$\gamma(H)$ is a sublinear function of H . β measures the sublinearity (*i.e.* a negative curvature) of $\gamma(H)$ according to $\gamma(H) - \gamma_0 \propto H^{1-\beta}$. We obtained a reduction of β caused by structural disorder (replacement of Y by Lu). Similar results are obtained by the isoelectronical substitution of Ni by Pt (see Fig. 2). We note that our curvatures for $\text{LuNi}_2\text{B}_2\text{C}$ and $\text{YNi}_2\text{B}_2\text{C}$ exceed slightly the value of $\beta = 0.5$ representing the \sqrt{H} -dependence. To the best of our knowledge the strong sublinearities for $\gamma(H)$, measured by the exponent β , of the borocarbides under consideration are the largest reported so far for any superconductor except for the related system MgB_2 ($\beta = 0.77$) [8]. The observed $\gamma(H) \propto H^{1-\beta}$ law with $\beta \approx 0.5$ points to unconventional pairing responsible for this peculiarity since according to Ref. [9] $\gamma(H) \propto \sqrt{H}$ is a signature for a nodal gap with d -wave symmetry while $\gamma(H) \propto H$ is usually expected for superconductors with isotropic s -wave order parameter. According to Refs. [10,11] Volovik's clean limit d -wave approach can be generalized to describe also strong impurity scattering. Then at low magnetic fields $H \ll H_{c2}(0)$ the specific heat coefficient $\gamma(H)$ follows a $H \ln H$ dependence. Our data can be described equally well by these $H \ln H$ dependence for $H/H_{c2}(0) \leq 0.3$ as well as by the $H^{1-\beta}$ behaviour. This is shown in Fig. 3: obviously, the $H \ln H$ behaviour is not very distinct from the power law at low fields $\mu_0 H \leq 1.5$ T. At higher H the $H \ln H$ dependence may deviate since it was derived for low $H \ll H_{c2}(0)$, only [10]. Hence, unconventional pairing cannot be ruled out in non-magnetic borocarbides on grounds of $\gamma(H)$ data.

Remarkably, a sublinear $\gamma(H)$ -law has been reported also for MgB_2 [8,12] and has been addressed theoretically for a clean s -wave two-band superconductor (TBSC)[13]. It was found that β depends sensitively on the ratio of the two gaps of the strongly and weakly coupled bands. That appealing picture proposed for MgB_2 might be transferred to borocarbides under con-

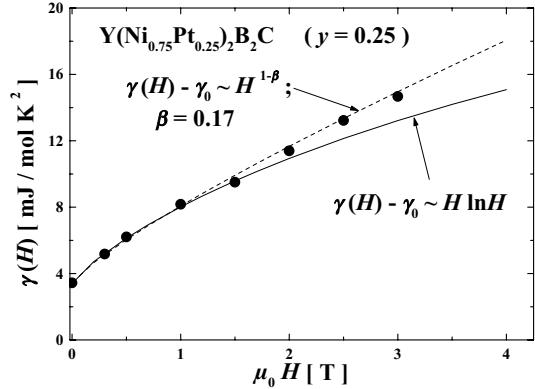


Fig. 3. Magnetic field dependence of $\gamma(H)$ for $\text{Y}(\text{Ni}_{0.75}\text{Pt}_{0.25})_2\text{B}_2\text{C}$. The solid line is a fit according to $\gamma(H) - \gamma_0 \propto H \ln H$. The dashed line is a fit according to $\gamma(H) - \gamma_0 \propto H^{1-\beta}$ with $\beta = 0.17$.

sideration which are also well-known TBSC's [14].

To summarize, specific heat data at low magnetic fields are discussed in the context of a dirty d -wave scenario as well as within the conventional extended s -wave picture in the intermediate transition region in between the clean and the dirty limits. At low fields the $H \ln H$ dependence of $\gamma(H)$ predicted for d -wave pairing in the dirty (unitary) limit is not very distinct from the $H^{1-\beta}$ behaviour which favors s -wave superconductivity in that transition region. Thus, considering results on $\gamma(H)$, a possible unconventional pairing in borocarbides cannot be ruled out. This conclusion is also supported by the recent observation of point nodes in the gap function of $\text{YNi}_2\text{B}_2\text{C}$ in magnetic field dependent thermal conductivity measurements [7].

Acknowledgement We thank the Deutsche Forschungsgemeinschaft and the SFB 463 for support.

References

- [1] S.-L. Drechsler *et al.*, Physica C **317-318** (1999) 117.
- [2] D. Lipp *et al.*, Europhys. Lett., **58** (2002) 435.
- [3] M. Nohara *et al.*, J. Phys. Soc. Jpn. **66** (1997) 1888.
- [4] G. Wang, K. Maki, Phys. Rev. B **58** (1998) 6493.
- [5] M. Nohara *et al.*, J. Phys. Soc. Jpn. **68** (1999) 1078.
- [6] E. Boaknin *et al.*, Phys. Rev. Lett., **87** (2001) 237001.
- [7] K. Izawa *et al.*, preprint, cond-mat/0205178 (2002).
- [8] H.D. Yang *et al.*, preprint, cond-mat/0104574 (2001).
- [9] G.E. Volovik, JETP Lett. **58** (1993) 469.
- [10] C. Kübert *et al.*, Solid State Commun., **105**(1998) 459.
- [11] Y.S. Barash *et al.*, JETP Lett., **65**(1997) 638.
- [12] Y. Wang *et al.*, Physica C **355** (2001) 179.
- [13] N. Nakai *et al.*, J. Phys. Soc. Jpn., **71** (2002) 23.
- [14] S.V. Shulga *et al.*, Phys. Rev. Lett. **80** (1998) 1730.