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Abstract

Using the Nyquist approach, temperature fluctuations of an object, in thermal contact with a reservoir, are studied.
We argue that, upon decreasing the size of the object, one necessarily reaches the quantum regime. The crossover
temperature between the classical and quantum regimes is given by T° ~ fi/kpT, where 7 is the thermal relaxation
time of the system. For a nano-scale metallic particle in a good thermal contact with a reservoir, 7" can be on a

scale of a few Kelvin.
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In recent years, there has been increasing interest
in the nano-scale problems [1,2]. For these nano-scale
systems, the temperature fluctuation can be large. The
existing study has been limited to the classical regime.
Any classical variable has its corresponding standard
quantum limit where quantum fluctuations dominate.
Similarly, we expect temperature 7" will have its quan-
tum limit. Here we argue that when the temperature
is below T* ~ h/7, where 7 is the thermal relaxation
time of the nano-scale particle, a quantum tempera-
ture fluctuation regime emerges.

Consider a set of quantum dots, as shown in Fig. 1.
Assume these dots to be similar in the number of con-
tained particles, size, etc. In addition, each dot has
discrete levels, which are filled by a sufficient number
(N > 1) fermions (e.g., electrons) or bosons (e.g., *He
atoms). All these dots are in contact with a substrate
(large plate) which plays the role of a thermal reser-
voir. The reservoir is kept at a certain temperature 7.
The thermal contact between the dots and the reser-
voir will cause the thermal fluctuations in the dots. As
a result, the heat flows to/from the reservoir. The re-
laxation time for the thermal process between the dots
and the reservoir is 7.
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Fig.1

Fig. 1. The ensemble of the quantum dots.

We use the Nyquist approach [3] to treat the temper-
ature fluctuation. Assume now temperature 7' to play
the role of a generalized coordinate and the entropy S
the role of the generalized fluctuating force. The relax-
ation process of the temperature can be described by
a linearized macroscopic “equation of motion”:
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where A = 1/7, and AT = T —Tp, and is the deviation
of the equilibrium temperature 7' as a result of the
fluctuating force AS. Performing the Fourier trans-
form for AT and AS, we arrive at AT, = a(w)AS.,
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with a(w) = m Using the Callen-Welton

fluctuation-dissipation theorem [4], it immediately
follows:

(AT?),, = hcoth(hw/2kpT)a (w) , 2)

where the imaginary part of a(w): o’ (w) = é—f e

For the average quadratic fluctuation of 7', it can be
found:

oo}

oo RAT W
(AT7) = 2nCe / dwa T coth(hw/2kpT) . (3)

— 00

When kT /hA > 1, we have
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where we have introduced an upper band cutoff w. ~
1/71 on the order of the relevant bandwidth. One can
recognize immediately that Eq. (4) is the classical limit
of the temperature fluctuations. In the opposite limit,
AX > kpT, one finds:
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which means that at low temperatures, the fluctuations
would acquire a distinctly quantum character with /7
entering into the magnitude of (AT?). Any fluctuation,
described by Eq.(5), happen on a characteristic time
scale 7. The high temperature expansion in Eq. (4) has
already indicated the crossover temperature
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at which there is a change of the regime from the classi-
cal to quantum fluctuations. Figure 2 displays schemat-
ically the temperature dependence of the fluctuations
0T. Physically, T* = h/kpT corresponds to the uncer-
tainty in energy associated with the relaxation process
in the subsystem. The reservoir is attached to a subsys-
tem via a thermal contact that has its own bandwidth
h/7 and any temperature fluctuation will relax on the
scale of 7. Once T' <« T, the intrinsic bandwidth of
the contact rather than the temperature will dominate
the Gaussian fluctuations.

The low temperature limit ' < hA/kp implies that
the relaxation time of the thermal object has to be
short enough. Since the thermal relaxation time 7 =
CyRr, where Ry is the thermal resistance of the con-
tact between the object and the thermal reservoir. For
the metallic system— a nanometer mechanical res-
onator, which is a cylindrical gold (Au) rod of 1 um in
length L and 15 nm in radius r. One then finds 7 ~
6.7psec, and T* ~ 1 K, respectively, which is now ex-
perimentally accessible. For the case of a small bosonic
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Fig. 2. Temperature dependence of the fluctuations 67"

system— a droplet of *He of size 0.1 pm, which is en-
closed in a metallic container such as lead. Using the
values for C, and Rr from Fig. 8.6 in Ref. [5], One
then obtains 7 ~ 6.9 x 1078 second, and T* ~ 103K,
which is small for the given size of the droplet.

Experimentally the proposed crossover to quantum
regime can be seen as a change in temperature de-
pendence of noise of some observable. The choice de-
pends on a specifics of the experiment obviously, e.g
for an oscillating clamped beam [2] it can be a noise
of the mechanical oscillatior. In the case of magnetiza-
tion noise [6], one would desire to measure noise in the
SQUID at relevant frequencies 1/7.

In summary, we have shown for the first time that
when at temperatures below a characteristic value
T* ~ h/kpt, the temperature fluctuation would ac-
quire a distinctly quantum character. In light of recent
advances in nano-technology, the quantum fluctuation
regime should be experimentally accessible and might
be relevant for the experiments on nanoscale systems.
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