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Abstract

We review magnetic, superconducting and non-Fermi-liquid properties of the structurally layered heavy-fermion
compounds CenMmIn3n+2m (M=Co, Rh, Ir). These properties suggest d-wave superconductivity and proximity to
an antiferromagetic quantum-critical point.
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The report [1] of pressure-induced superconductiv-
ity in the heavy-fermion compound CeRhIn5, with a
transition temperature exceeding 2 K, has motivated
further exploration [2–5] of this compound and the
broader family of materials CenMmIn3n+2m, where M
is a transition metal Co, Rh or Ir . Diffraction studies
[6,7] show that the family can be considered a struc-
tural hybrid of CeIn3 and ’MIn2’; for n = 1, single lay-
ers of CeIn3 and ’MIn2’ are stacked sequentually along
the tetragonal c-axis, and for n = 2 there are two ad-
jacent layers of CeIn3 separated by a single layer of
’MIn2’. Crystallographic layering in the n = 1 mem-
bers produces electronic anisotropy, reflected particu-
larly in a Fermi surface dominated by a slightly warped
cylindrical sheet. [8–11] Though these materials should
not be considered strictly 2-dimensional, their elec-
tronic and structural anisotropies do influence mag-
netic, superconducting and quantum-critical proper-
ties. In the following, we briefly review what has been
learned about some of these properties.
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The infinite-layer (cubic), parent of this family,
CeIn3, orders antiferromagnetically near 10 K at at-
mospheric pressure. Applying pressure suppresses its
Néel temperature toward T = 0 at a critical pressure
Pc ≈ 2.6 GPa, where a ’dome’ of superconductivity
appears in a narrow pressure window centered around
Pc. [12] The single and bilayer members with M=Rh
also order antiferromagnetically and become pressure-
induced superconductors, but both with nearly an
order of magnitude higher Tc [1,5] than the maximum
of ∼ 0.25 K found in CeIn3. Some magnetic prop-

TN Q µo Pc

(K) (h,k,l) (µB) (GPa)

CeIn3 10.2 ( 1
2 , 1

2 , 1
2 ) [13,14] 0.65 [13] 2.6± 0.1 [12]

0.48 [14]

CeRhIn5 3.8 [1] ( 1
2 , 1

2 , 0.297) [15] 0.37 [15] 1.6± 0.1 [1]

Ce2RhIn8 2.8 [2] ( 1
2 , 1

2 , 0) [16] 0.55 [16] 3 ± 0.5 [5]

1.65 [17] 0.4 ± 0.1 [5]

Table 1

Magnetic properties of CemRhnIn3m+2n and CeIn3. TN : Néel

temperature; Q: antiferromagnetic propagation vector; µo: or-

dered moment; Pc: critical pressure to suppress TN to T = 0.
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Tc ∆C/γnTc γn Ha,b
c2 Hc

c2 ∂Ha,b
c2 /∂T ∂Hc

c2/∂T ξa,b
0 ξc

0

(K) (J/mol K2) (T) (T) (T/K) (T/K) (Å) (Å)

CeIrIn5 0.4 [4] 0.76 [4] 0.70 [4] 1.0 [11] 0.49 [11] -4.8 [4] -2.54 [20] 260 [11] 180 [11]

CeCoIn5 2.3 [3] 4.5 [3] 0.35 [3] 11.9 [21] 4.95 [21,22] -24.0 [22] -8.2 [20] 82 [22] 53 [22]

11.6 [22] -11.0 [22]

CeRhIn5 2.12 [23] 0.36 [23] 0.38 [23] 10.2 [24] -15.0 [24] 57 [24]

@ 2.1 GPa at 2.5 GPa at 2.5 GPa

Ce2RhIn8 1.1 [5] ≈ 0.20 [5] 5.4 [5] -9.2 [5] 77 [5]

@ 1.63 GPa

Table 2

Superconducting properties of CemTnIn3m+2n. Tc: superconducting transition temperature; ∆C/γnTc: jump in specific heat at

Tc normalized by the Sommerfeld coefficient γn at T ≥ Tc; H
a,b
c2 (Hc

c2): upper critical field in the a-b plane (parallel to the c-axis)

extrapolated to T = 0; ∂Hc2/∂T : slope of the upper critical field near Tc; ξ0: Ginzburg-Landau superconducting coherence length

at T = 0.

erties of these three compounds are summarized in
table 1. The commensurate ordering Q-vector, ordered
moment and Pc are similar in CeIn3 and Ce2RhIn8;
however, at 1.65 K, Ce2RhIn8 also develops an incom-
mensurate magnetic structure [17], as does CeRhIn5.
From this comparison, the n = 2 member superficially
appears to be a magnetic hybrid of the n = 1 and
n = ∞ members, as might be expected from its crystal
structure. Inelastic neutron scattering studies [18] of
CeRhIn5 find that magnetic correlations develop on a
temperature scale roughly twice TN . The correlation
length along the tetragonal c-axis ξc ≈ 1.3 c; whereas,
in the a-b plane, the correlation length ξa ≈ 5 a,
reflecting magnetic anisotropy that may be impor-
tant for superconductivity. Presently, we do not know
if this anisotropy changes as the antiferromagnetic-
superconducting boundary is approached with applied
pressure, but it appears [19] that the c-axis discom-
mensuration δ is somewhat pressure dependent.

A rather remarkable characteristic of this family of
materials is their instability to superconductivity. Be-
sides CeIn3, CeRhIn5 and Ce2RhIn8 under pressure,
CeIrIn5 and CeCoIn5 are superconducting at atmo-
spheric pressure. See table 2. In each case, supercon-
ductivity develops out of a highly correlated state with
a large specific heat Sommerfeld coefficient γn and in
proximity to antiferromagnetism. For example, substi-
tuting a small amount of Rh into CeCo1−xRhxIn5 or
CeIr1−xRhxIn5 induces antiferromagnetism, and, for a
range of x (roughly 0.3 � x � 0.7), homogeneous coex-
istence of superconductivity and antiferromagnetism.
[25–27] The superconducting transition temperatures
also are high compared to other heavy-fermion exam-
ples. With applied pressure, all compounds listed in ta-
ble 2 have Tcs between 2.2 and 2.6 K [5,24,28], except
CeIrIn5 whose bulk Tc reaches ≈ 1 K at 2.1 GPa [29,30]
and does not exceed 1.2 K at pressures to 4 GPa [31].

Electronic anisotropy is reflected in an upper criti-
cal magnetic field that is typically two times larger for

H ‖ a − b plane than for H ‖ c-axis. In many cases,
the measured Hc2(0) exceeds the Pauli paramagnetic
limit HP /Tc = 1.86 T/K. [32] In this regard, CeCoIn5

has been studied most extensively and, for H ‖ [001],
exhibits a first order phase transition in a narrow field
range at low temperatures [33], which is attributed
to Pauli limiting. For H ‖ [110], a magnetically hys-
teretic transition develops below 0.6Tc that is consis-
tent with the formation of a spatially inhomogeneous
Fulde-Ferrel-Larkin-Ovchinnikov state. [21] This pos-
sibility deserves further study. Additionally, Hc2(0) is
weakly, but clearly, anisotropic within the basal plane
[21,34], implying the possibility of non-s-wave pairing.

There is growing evidence, summarized in table
3, that superconductivity in members of the family
is unconventional. Power laws found deep in the su-
perconducting state, C/T ∝ T , thermal conductivity
κ ∝ T 3 and spin-lattice relaxation rate 1/T1 ∝ T 3, are
those expected of an order parameter with line nodes.
Together with Knight shift measurements [36,42] on
CeCoIn5, these power laws suggest unconventional
spin-singlet superconductivity, and, indeed, thermal
conductivity measurements [34] find a prominent four-
fold modulation in κ as a magnetic field is rotated in
the basal plane. The magnitude and location of max-

C/T κ 1/T1 λ

CeIrIn5 T [20] T 3 [20] T 3 [35,36] T 1.5±0.2 [37]

CeCoIn5 T [20] T 3.37 [20] T 3+ε [36] T 1.65±0.2 [37]

T 1+ε [38]

T 1.5 [39]

T
3
2 /T [40]

CeRhIn5 T [23] T 3 [41]

@ 2.1 GPa

Table 3

Power laws in the superconducting state. C/T : specific heat

divided by temperature; κ: electronic thermal conductivity;

1/T1: spin-lattice relaxation rate; λ: superconducting penetra-

tion depth.
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C/T ρ 1/T1T

CeIn3 T 1.5−1.6 [12] const. [43]

near Pc P ≥ Pc

CeIrIn5 γ0 − AT
1
2 [44] T 1.3 [4] (T + 8)

− 3
4 [35]

for H = 6 T (T + 0.86)
−1

2 [36]

CeCoIn5 − ln T [3,45] T 1.0±0.1 [28,45] ∼ T − 3
4 [36]

CeRhIn5 T 1 [24] (T + 1.5)−
1
2 [41]

P = 3.2 GPa P = 2.1 GPa

Ce2RhIn8 T 0.95±0.05 [5]

P = 1.63 GPa

Table 4

Non-Fermi-liquid behaviors. C/T : specific heat divided by tem-

perature; ρ: electrical resistivity in the a − b plane; 1/T1T :

spin-lattice relaxation rate divided by temperature.

ima in κ(θ) are consistent with an order parameter
having dx2−y2 symmetry.

The boson mediating Cooper pairing remains un-
known, but the preponderance of evidence points to an-
tiferromagnetic spin fluctuations. The temperature de-
pendence of some normal state properties further sug-
gests that these fluctuations may not be conventional.
For a Landau Fermi liquid, C/T ∼ constant, ρ ∼ T2,
and 1/T1T ∼ constant are expected at low tempera-
tures. As shown in table 4, this is not the case for sev-
eral family members. These distinctly non-Fermi-liquid
behaviors are expected [46] near an antiferromagnetic
quantum-critical point and are found for the examples
in table 4 only in T −P−H space close to superconduc-
tivity. The functional dependencies, particularly ρ ∝
T , suggest 2-dimensional antiferromagnetic quantum
fluctuations. Understanding the interplay of electronic
and magnetic anisotropies with quantum-critical fluc-
tuations and superconductivity is one problem posed
by this interesting family of heavy-fermion compounds.

Finally, we note the possible existence of a spin pseu-
dogap in CeRhIn5 near its critical pressure Pc [43]
and in CeCoIn5 for 0 � P � 1.6 GPa [28]. The
small difference in temperature scale (∼ 5 K and ∼
3 K, respectively) on which a pseudogap signature ap-
pears in these two compounds seems to be related to
their relative cell volumes. [28] An analysis of system-
atic changes in thermodynamic and transport proper-
ties of Ce1−xLaxCoIn5 further suggests a connection
between the possible pseudogap in CeCoIn5 and the
development of short-range antiferromagnetic correla-
tions. [45]
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