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Abstract

We discuss the effect of magnetic impurities on the inelastic scattering and dephasing of electrons. Magnetic
impurities mediate the energy exchange between electrons. This mechanism is especially effective at small energy
transfers F in the absence of Zeeman splitting, when the two-particle collision integral in the electron kinetic
equation has a kernel K o< 1/E? in a broad energy range. In a magnetic field, this mechanism is suppressed at E
below the Zeeman energy. Simultaneously, the Zeeman splitting of the impurity spin states reduces the electron
dephasing rate, thus enhancing the effect of electron interference on conduction. We find the weak localization
correction to the conductivity and the magnitude of the conductance fluctuations in the presence of magnetic field
of arbitrary strength. Our results can be compared quantitatively with the experiments on energy relaxation in

short metallic wires and on Aharonov-Bohm conductance oscillations in wire rings.
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1. Introduction

The effect of magnetic impurities on the electron
properties of a metal is drastically different from that
of “usual” defects which just violate the translational
invariance of the crystalline lattice. The reason for the
difference is that a magnetic impurity brings an ad-
ditional degree of freedom — its spin. We demonstrate
that magnetic impurities may mediate energy transfer
between electrons. If the transferred energy E exceeds
the Kondo temperature Tk, then the energy relaxation
occurs predominantly in two-electron collisions. We de-
rive the kernel K of the collision integral in the kinetic
equation for the distribution function. This kernel de-
pends strongly on the transferred energy, K oc J*/E?.
The dependence of K on the energies ¢; of the collid-
ing electrons comes from the logarithmic in |e;| renor-
malization of the exchange integral J, known from the
theory of Kondo effect[1], and is relatively weak as long

L Corresponding author. Theoretical Physics Institute, Uni-
versity of Minnesota, Minneapolis, MN 55455, USA. E-mail:
glazman@umn.edu

Preprint submitted to LT23 Proceedings

as |e;| > Trk. The 1/E? divergence of the kernel is cut
off at small F; the cut-off energy is determined by the
dynamics of the impurity spins.

Localized spins affect not only the energy relaxation
rate, but also the conventional electron transport prop-
erties, such as the temperature and field dependence
of the conductance. No spin dynamics of impurities is
needed for the suppression of the interference correc-
tions to the conductivity; interaction of electron spins
with the magnetic moments “frozen” in random direc-
tions already leads to that suppression [2]. Universal
conductance fluctuations (UCF) are not suppressed by
“frozen” magnetic moments. However, even a relatively
slow relaxation (such as Korringa relaxation) of indi-
vidual magnetic moments leads to the time-averaging
of the random potential “seen” by transport electrons
in the course of measurement, and the mesoscopic fluc-
tuations of the dc conductance are averaged out [3]. We
find the weak localization correction to the conductiv-
ity and the magnitude of conductance fluctuations in
the presence of magnetic field of arbitrary strength.

28 June 2002



@0 v ke ® x.0 a
> .
Y s 4. =0
—————— B e
Kyl SY Ky, 0h Kyl [SHE
2

Fig. 1. (a) A characteristic diagram for the amplitude of inelas-
tic electron-electron scattering mediated by the exchange in-
teraction of electrons with a magnetic impurity, in notation of
Ref. [6]. The solid lines denote electron states, the dashed lines
denote the localized spin state. (b) The scattering amplitude
cannot be represented in the form of an effective four-electron
vortex.

2. Inelastic scattering of an electron off a
magnetic impurity

We describe the metal with magnetic impurities by
means of the exchange Hamiltonian:
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where S; is the spin operator of the I-th impurity at
point r;, S7 = S(S + 1). Free electron states ¢, are
labelled by the wave vector k and the spin index «,
Urja = Y, € ¢, The Pauli matrices are denoted
by o = (¢%,0%,0%).

The impurities can be considered independently
if their concentration m is low enough. In the one-
impurity scattering problem, there is interaction only
in s channel, so we will label the participating electron
states with scalar index k.

In the framework of the exchange Hamiltonian (1),
the lowest non-vanishing order of the perturbation the-
ory series in the exchange constant J for the inelastic
scattering amplitude is the second order:
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where g; = (ki, ;). In the diagrammatic representa-
tion, the amplitude is the sum of the diagram shown
in Fig. 1a and the other three diagrams that can be
obtained from the diagram of Fig. 1a by the transpo-
sition of indices 1 < 2 and/or 3 < 4. Note that there
is no summation over the initial or final spin states of
the impurity in Eq. (2). Thus the spin lines are not
closed, i.e. contrary to Ref. [4] this scattering ampli-
tude cannot be represented in the form of an effective
four-electron vortex (Fig. 1b).

The denominator in Eq. (2) is the energy of the inter-
mediate virtual state, which equals 4(&x, — &k, ) for two
of the four possible pairings of the electron creation-
annihilation operators (one of these pairings is shown
on Fig. 1a), or £(&k, — &k, ) for the other two pairings.
The spin structure of the scattering amplitude can eas-
ily be found from Eq. (2). In a scattering event, spins

of one or both participating electrons must flip, with
the corresponding change of the impurity spin. Here
we are interested only in the relaxation of the electron
energy distribution, and assume that in the absence of
magnetic field the system does not have any spin polar-
ization. Therefore we need to calculate only the total
cross-section of scattering into all possible spin states,
averaged over the initial spin states of the impurity and
two electrons. We obtain the collision integral kernel
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which depends only on the energy E transferred in the
collision.

For low energy electrons, the effective exchange con-
stant J is renormalized due to the Kondo effect.[5] In
the leading logarithmic approximation [6] the renor-
malized expression for the exchange constant in Eq. (3)
is
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where € is the characteristic energy of electrons par-
ticipating in the collision and Tk is the Kondo tem-
perature. This approximation is justified as long as the
energies €; ~ €”of all incoming and outgoing electrons
satisfy the condition ¢* 2Tk. It is important to note
that energy €, which lies within the width of the elec-
tron distribution function, does not cut off the singu-
larity in the transferred energy FE. For a more detailed
expression for the renormalized K (E) see Ref. [7]

The low-energy divergence of the inelastic scattering
amplitude (2) is cut off by the time evolution of the im-
purity spin correlator (S'|S7(t)S* (¢')|S). In magnetic
field B this evolution is a spin precession with fre-
quency ws = gimpusB. When ws exceeds the energies
of the electrons being scattered, the scattering rate sat-
urates [8] at

K(B) ~ 2s(s + 1)(,]”)4%. )

The scattering processes in which both initial or both
final electrons have the same spin are suppressed com-
pletely.

The other mechanism, which cuts off the ¥ = 0 sin-
gularity of the kernel (3) even at B = 0, is the im-
purity spin relaxation. The relaxation limits the life-
time of the intermediate state and the denominator in
Eq. (2) acquires the imaginary part. At high tempera-
ture T' > T scattering of the thermal electrons on the
spin results in an exponential decay of the spin correla-
tion function, (S'|S7 (£)S*(t')|S) o exp(—|t — t'|/7T).
The impurity spin correlation time 7 can be evaluated
with the help of the Fermi golden rule. If the deviation
from the thermal equilibrium is weak, we have
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As T is lowered towards Tk, the exchange constant is
renormalized according to Eq. (4). The resulting ex-

pression for the spin-flip rate reads:
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The energy scale i/7p sets the limit of applicability of
Eq. (2) and cuts off the singularity in the kernel (3) at
E ~ h/7p. Note that within the limits of applicability
of Eq. (7), the spin-flip rate satisfies the condition T" >
h/rr > Tk.

At very small energies (|e;|,T < Tk) the Fermi-
liquid description of electrons is valid again. The
behavior of the system is described in this case
by the quadratic fixed-point Hamiltonian, with the
four-fermion interaction being the least-irrelevant
term.[9,10] The calculation of the inelastic scattering
rate is then straightforward, the resulting collision-
integral kernel is given by
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When T = 0, the inelastic scattering rate is h/7n =
fOE dEK(E)E « (¢/Tx)?* and decreases faster than ¢
at small ¢ — 0, as it is supposed to be in the Fermi-
liquid picture.

We also discuss the relaxation due to the electron
scattering on magnetic impurities in wires with applied
bias eV > T. In this case the electron distribution is
smeared, and the width of smearing eV exceeds the
typical energies |e;| of the colliding electrons. Assuming
eV > Tk and substituting the renormalized exchange
constant J = 2/(v1n(eV/Tk)) into the kernel Eq. (3),
we obtain
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The 1/E? dependence in Eq. (9) persists down to the

cut-off, which is determined by the spin-flip rate 1 /7y .

For the spin-flip rate in the non-equilibrium situation

the temperature T" in Eq. (7) should be replaced by the

electron distribution function smearing eV:

h
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Here the numerical constant v ~ 1 depends on details
of the non-equilibrium electron distribution function.

3. Effect of spin scattering on electron
interference phenomena

Magnetic impurities provide mechanism not only for
electron energy relaxation but also for electron phase

relaxation, which suppresses the interference phenom-
ena, such as weak localization and conductance fluc-
tuations. Here we consider these phenomena for metal
wires with magnetic impurities, which can be partially
polarized by an applied magnetic field.[3]

The weak localization correction to the conductivity
of a wire without spin-orbit scattering in the conditions
of strong Zeeman splitting of the conduction electron
states (ez7s > 1) and slow impurity spin relaxation
(0 > 75) is
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Here 1/7: = 2mvnJ?S(S + 1) is the scattering rate of
electrons on magnetic impurities in the absence of mag-
netic field. Function P(e) represents the probability of
spin flip in the presence of magnetic field B:

Ao = (11)
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For S = 1/2 impurities, we have ($2) = 1/4 and (S,) =
(1/2) tanh(ws/2T). In this case function P(e) can be
rewritten in the form:

PE) = 3 (11— nle+ws)) +pra(e+ws)),  (13)
where pr,; = e¥/2T /(2 coshws/2T) is the proba-
bility for the impurity spin to be parallel (antiparal-
lel) to the direction of the magnetic field and n(e) =
(1+exp(e/T)) is the electron occupation number with
energy €.

The term B2/B2 in Eq. (11) represents the orbital
effect of the applied magnetic field on conducting elec-
trons; B. defines the characteristic value of the mag-
netic field, which produces the orbital dephasing rate
comparable with the spin scattering rate:
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Here Ay is the wire cross-section area and ¥ is a dimen-
sionless factor depending on the wire geometry and the
magnetic field orientation. The expression in the de-
nominator /D7s A, represents the effective area, cov-
ered by an electron trajectory between consequent spin
flips. The characteristic magnetic field B; gives an up-
per estimate on system temperature 7c, below which
the effect of spin polarization prevails the orbital effect
of magnetic field:

Te = SgimppsBe. (15)

If the orbital effect of the magnetic field is strong,
we expand Eq. (11) in B./B and obtain:
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Conductance fluctuations can be considered simi-
larly to the evaluation of Ao. We concentrate here on
the amplitude of the Aharonov-Bohm “hc/e” oscilla-
tions. Magnetic field applied through the ring changes
electron wave functions and, consequently, the conduc-
tance of the ring of radius 7. The conductance statistics
is characterized by the correlation function:

! o AD
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where ® = 772 B is the magnetic flux through the ring
and « is a dimensionless geometry dependent factor.

In the high temperature case? , 7T > 1, we find the
amplitude of oscillations of the conductance correlation
function:

D3/2 e—QWkTQ/F(E)/D de
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with + being the dephasing rate due to mechanisms
other than magnetic impurity scattering.
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4. Comparison with experiments

Relaxation of the electron energy distribution was
investigated experimentally in metallic wires of Cu and
Au in Refs. [11,12]. In these experiments, a finite bias
V was applied to the wire terminals. It was found that
starting from fairly small wire lengths, the electron dis-
tribution is smeared over the range of energies eV, in-
stead of having two distinct steps created by the bias
applied to the wire ends. The observed electron energy
relaxation was attributed [11,12] to electron-electron
collisions. The collision-integral kernel for £ < eV ex-
tracted from the experiments has the form K(FE) =
h/(ToE?), with a cut-off at some low energy, which
scales linearly with eV.[13]

Properties of these samples are compatible with the
presence of iron impurities with a concentration up to
few tens of ppm.[13] The spin-flip rate, Eq. (10), is
the low-energy cut-off for the 1/E? kernel dependence.
This cut-off is roughly proportional to the applied volt-
age, in agreement with experimental observations.[13]
We must note, however, that the lower voltages used
in experiment [12] are close to the Kondo temperature,
so the leading-logarithmic approximation [6,14], used
in derivation of Egs. (9), (10), may be insufficient.

2 We notice that even if the spin scattering is strong initially,
7sT < 1, due to the impurity spin polarization, the effective
scattering rate decreases at sufficiently strong magnetic field,
leading the system to the high temperature regime.
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Fig. 2. Figure shows dependence of the “hc/e” oscillations of
the conductance correlation function on the applied magnetic
field B for several values of the impurity spin S in case when
y7s = 1.5.

Recent experiments [15] demonstrate that the pre-
viously observed [11] electron energy relaxation in thin
wires is indeed suppressed by the applied magnetic
field, thus supporting our hypothesis that the origin of
the relaxation is the inelastic scattering on the mag-
netic impurities.

In measurements [16] of the conductance of a Cu
ring, the amplitude of the conductance oscillations in-
creases in strong magnetic field we ~ T. This obser-
vation can be explained as the result of the impurity
spin polarization by the magnetic field. Figure 2 repre-
sents the amplitude of the first harmonic (“hc/e” oscil-
lations) of the conductance correlation function in the
limit 7' > v, 1/7s, described by Eq. (18), for different
values of the impurity spin S.

In conclusion, the exchange interaction of itinerant
electrons with magnetic impurities can facilitate elec-
tron energy and phase relaxation. We derived the ker-
nel of the collision integral which determines the energy
relaxation, and found the weak localization correction
to the conductivity and the amplitude of conductance
fluctuations at an arbitrary level of polarization of mag-
netic impurities by an external magnetic field. The ob-
tained results provide a quantitative explanation of the
experiments[11,12] on anomalously strong energy re-
laxation in short metallic wires and may be compared
with the observed behavior of the “hc/e” oscillations
of the conductance of an Aharonov-Bohm ring.[16]

Acknowledgements

The authors are grateful to I. Aleiner, N. Birge, and
H. Pothier for valuable discussions. This work was sup-
ported by NSF Grants No. DMR 97-31756 and DMR
0120702 at the University of Minnesota and by the
US-ONR, the LPS, and DARPA at the University of
Maryland.



References

[SL

S NCNCTR

(9]

A.C. Hewson, The Kondo problem to heavy fermions
(Cambridge University Press, 1993).

B.L. Al’tshuler, A.G. Aronov, M.E. Gershenson and Yu.V.
Sharvin, Sov. Sci. Rev. A. Phys. 9, 223 (1987).

The limits of zero and strong ws > T are well studied,
see the article J.S. Meyer, V.I. Falko and B.L. Altshuler,
cond-mat /0206024 and refs. therein.

J. Sélyom, A. Zawadowski, Z. Physik 226, 116 (1969).
J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
A.A. Abrikosov, Physics 2, 21 (1965).

A. Kaminski and L. I. Glazman, Phys. Rev. Lett. 86, 2400
(2001).

G. Goppert, Y.M. Galperin, B.L. Altshuler and H.
Grabert, cond-mat/0202353.

P. Nozieres, J. Low Temp. Phys 17, 31 (1974).

[10] I. Affleck and A.W.W. Ludwig, Phys. Rev. B 48, 7297

[
[
[
[
[
[

(1993).

11] H. Pothier et al., Phys. Rev. Lett. 79, 3490 (1997).

12] F. Pierre et al., cond-mat/0012038.

13] H. Pothier, private communication.

14] P.W. Anderson, J. Phys. C 3, 2436 (1970).

15] A. Anthore et al., cond-mat/0109297.

16] N. Birge, talk at Aspen Winter Conference, January 2002.



