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Abstract

Systematic studies on the interplay between the antiferromagnetic SDW and the superconductivity in Cn_;Ru,
alloys are reported. The phae transition of the two phases as the function of x appears to be of the first order. The
antiferromagnetic SDW is stabilized by the excitonic phase formation competing with the Bose condensation of

the superconductivity in Cri_;Ru, alloys.
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The discovery of high temperature superconductiv-
ity (HTSC) in Cu oxides [1] stimulated us the sub-
ject of phase transition of the antiferromagnetic and
superconducting states upon doping carriers [2]. The
details of coexistence or critical behaviors in any sys-
tem, particularly the strongly correlated electron sys-
tem (SCES) reflect the microscopic mechanism of su-
perconductivity. In this respect, we focussed on metal-
lic Cr system, where the superconducting phase seems
to coexist with the antiferromagnetic long range or-
dered (LRO) phase according to the recent publica-
tions [3][4].

The microscopic mechanism of the antiferromag-
netic SDW in metallic Cr is now well understood by
the electron and hole interaction with opposite spins,
or the nesting of the Fermi surface below the ordering
temperature, Ty [5]. Then substitution of Ru or Re
to Cr gives rise to an increase of electron density at
Fermi energy, and accordingly an increase of the nest-
ing Q space, so that Ty as well as the nesting wave
vector rapidly increases [9]. Further substitution sup-
presses the antiferromagnetic SDW probably due to
the breakdown of this mechanism. The superconduct-
ing phase appears in both Cr-Ru[4] and Cr-Re[3][7],
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when Tn quickly drops upon increasing either Ru or
Re concentration in these Cr alloys.

Ru and Re have high melting temperature more than
2000°C and the vapor pressure of Cr is extremely high
near below melting point, and hence the sample prepa-
ration obtaining a uniform alloy is extremely difficult.
We applied an established experimental technique of
high temperature heat treatment by using a sealed W
crucible [8], which prevents the evaporation of Cr ele-
ment at elevated temperatures as high as 1500°C.

Bulk properties of the conductivity in the Cri_,Ru,
alloy system show a clear phase transition from the
antiferromagnetic SDW to the superconducting phase
as the increase of x. The effect of the antiferromag-
netic SDW LRO on conductivity is quite obvious that
a sharp minimum at Tn follows the anomalous in-
crease of the resistivity at low temperatures upon rais-
ing temperature, in which T was directly determined
in terms of magnetic neuron diffraction. Furthermore,
the resistance drops to zero in the samples not show-
ing the antiferromagnetic LRO (z > 0.17). In brief, the
magnetic contribution to the resistivity below T was
found to be well represented by a universal scaled func-
tion which follows 1 — (T/Tw )?, when the order param-
eters extrapolated to 0 K are normalized to be unity.
The experimental fact that the anomalous increase of
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resistivity below T’y is attributed to the antiferromag-
netic SDW formation was confirmed by the detailed
measurement from the single crystal of z = 0.142.

The magnetic neutron diffraction shows that a sim-
ple antiferromagnetic LRO structure is realized of the
antiparallel arrangement between nearest neighbor
spins in bce crystals. The incommensurate spin struc-
ture realized in pure bcc Cr was not observed at all.
No trace of the magnetic elastic scattering component
was visible in a = 0.181 single crystal above 1 K.
The antiferromagnetic order parameter was confirmed
to follow y/1 — (T'/Tn)2. Therefore, as far as the anti-
ferromangnetism of the Cri_,Ru, alloys is concerned,
the simple antiferromagnetic SDW structure extends
to x < 0.17. It should be emphasized here that the
anomalous increase of resistivity in the antiferromag-
netic SDW LRO state for all samples of z < 0.17
is quantitatively related to the antiferromagnetic or-
der parameter. Therefore, the fact of the magnetic
conductivity observed here indicates that the antifer-
romagnetic SDW is formed by the excitonic phase by
the nesting of the electron and hole bands even though
Tn drops substantially near ..

Resistivity of the samples for £ > 0.17 shows a
discontinuous drop at 7z. The superconductivity was
also clearly confirmed by the specific heat measure-
ment. Thermal evolution of the specific heat with an
enhanced anomaly defined as the A transition at 7,
follows the single exponential behavior below T¢. Ther-
mal evolution of the specific heat near and well below
Te could be analyzed by applying the standard BCS
theory of the s-wave superconductivity. For instance,
the specific heat jump at 7; gives a close value to the
BCS result, 1.43C,,, (electronic specific heat). Another
important result is that the low temperature specific
heat above T is well approximated by the sum of a lin-
ear electronic term plus a cubic vibrational term, from
which we could extract the effective electron mass and
the Debye temperature parameters. These values are
approximately 6 mJ/mol-K? and 400 K respectively,
which are compared with 1.4 mJ/mol-K? and 600 K
for pure Cr, respectively.

The electronic phase diagram of the Cri_;Ru, al-
loy is now well established near the phase boundary
between the antiferromagnetic SDW and the super-
conducting states around x = 0.17. The analytical re-
sults by this simple expression shows that the SDW be-
comes unstable when the band truncation disappears.
We could obtain the power law of Ty as the function of
x with ~0.4 of the index value, under a simple assump-
tion that the band parameters are proportional to Tx.
On the other hand, the critical value of of x for the su-
perconductivity was determined to be, x. ~ 0.17. Our
trial to find a bicritical behavior or any enhancement
of the critical behavior by preparing z = 0.17 sample
was not successful.
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Fig. 1. Transition temperature vs alloy concentration, x
for Cri—_zRu, alloys. Solid lines are fitted results of
To ~ 1.15(z — 16.8) %32 and T ~ 202(—z + 17.1) %40, Note
the large difference of temperature scale between T'x and T¢.

To conclude, the antiferromagnetic SDW and the su-
perconductivity are exclusive in Cr-Ru alloy system,
possibly in other Cr alloys. The fact is reasonably com-
prehended by the conceivable notion that the antiferro-
magnetic SDW state in Cr and its alloys is the excitonic
phase. Therefore, both states cannot coexist without a
certain synergestic mechanism that the superconduc-
tivity may not destruct the antiferromagnetism. We
also determined that the symmetry of the supercon-
ductivity in Cr-Ru alloys is the s-wave.
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