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Abstract

We have measured the resistive transitions of ∼ 20 nanowires of superconducting amorphous MoGe with diameters
∼ 10 nm and lengths from 100 nm to 1000 nm. The transition width increases with decreasing cross sectional area
(i.e. increasing normal resistance per unit length) as described by the phenomenology including quantum phase-
slips used by Giordano to explain his earlier data and also by the rather similar results of a microscopic theory of
Golubev and Zaikin. The resistance well below Tc is much greater than can be explained by thermally activated
phase-slips alone. We consider this to strongly support the reality of quantum phase-slips, and the basic correctness
of these theories. The exact role of dissipation, whether from metal in the wire, from the carbon nanotube substrate,
or from the electromagnetic environment, in reducing quantum phase-slips needs further clarification.

1. Introduction

Superconducting long-range order and zero resis-
tance are forbidden by the Mermin-Wagner theorem
[1] in the limit of a strictly one-dimensional system. In
this paper, we review the progress that has been made
in unraveling how this limit is approached in physical
wires of superconducting material as they are made
smaller and smaller in diameter. The first big step was
the theoretical work of Langer and Ambegaokar and
of McCumber and Halperin (LAMH) [2]. As proposed
earlier by Little, they showed that the elementary pro-
cess giving rise to resistance in a thin superconducting
wire was a “phase-slip”, in which the magnitude of the
superconducting order parameter locally and momen-
tarily fluctuates to zero, allowing the phase difference
of the order parameter to “rotate” by 2π before the
magnitude relaxes back to its full value. Such a 2π
phase slip is associated by the Josephson relation with
a voltage pulse whose time integral is h/2e = 2×10−15

volt-sec. In the presence of a current, more of the slips
are of one sign than of the other, and a net dc resis-
tive voltage results, proportional to the current. The
LAMH analysis yielded an explicit formula for the
thermal activation energy for such a process

∆F = (8
√

2/3)(H2
c /8π)Aξ

and showed that the attempt frequency was approxi-
mately given by

Ω ≈ (1/τGL)L/ξ,

where 1/τGL is the Ginzburg-Landau relaxation rate
(which is of the order of the energy gap frequency), ξ
is the coherence length, and L is the length and A the
cross-sectional area of the wire. This value for ∆F rep-
resents the loss of superconducting condensation en-
ergy over a wire length ∼ ξ, and the value for Ω re-
flects the existence of independent fluctuations in seg-
ments of length ξ along the wire. This very plausible
result quickly was confirmed by experiments at Cornell
and Harvard [3] on tin whiskers of diameter ∼ 0.5µm.
These showed that the resistive transition followed an
exponential temperature dependence with a width of
order 1 mK, as predicted by the LAMH calculation for
a wire of that cross-sectional area.

Two decades later, Giordano [4] was able to fabri-
cate wires of considerably narrower cross-section, and
he repeated these measurements on wires of several
materials. Given their narrower cross-section than the
tin whiskers, the transition widths were considerably
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greater than in the earlier experiments, as expected,
but, surprisingly, they also showed a slower drop in re-
sistance at lower temperatures, whereas any thermal
activation model must give an ever steeper drop in re-
sistance because of the 1/T factor in the exponent. To
account for this, Giordano proposed a phenomenolog-
ical model which included quantum phase-slips which
do not “freeze out” at low temperatures in addition to
the thermal ones treated by LAMH. This proposal re-
mained controversial, however, because sample granu-
larity, leading to weak links between grains, could also
account for a somewhat similar T-dependence of resis-
tance.

2. Recent Work

Recently, our group has revisited this problem, us-
ing a novel technique due to Bezryadin [5] to fabricate
wires of the superconductor MoGe which are consid-
erably narrower and more uniform than those stud-
ied earlier. The essential new technique is the use of a
freely suspended carbon nanotube (or rope of them) as
a template to determine the width of the metal layer
deposited on top of it. In this way wires as narrow
as ∼ 5nm in width and of similar thickness could be
formed. Taking advantage of the homogeneity of this
well-studied amorphous material, the cross sectional
area could be determined from the measured length
and resistance, instead of the cross sectional dimen-
sions, which are not as accurately known.

Because of the exponential variation of resistance
with the activation energy ∆F , which is, in turn, pro-
portional to the cross-sectional area A, our data on
some 20 samples with a ∼ 4 : 1 range in A shows a wide
range of transition widths and shapes, as can be seen
in Fig. 1(a). This simple plot of R vs. T for a number of
samples shows a confusion of crossing curves, because
these samples range in length by a factor of 10 as well
as in cross-section by a factor of 4, both of which en-
ter into determining the measured resistance. To sort
this out, in Fig. 1(b) we plot the same data, now as re-
sistance per unit length, presuming that any intrinsic
length dependence is less important than the expected
exponential dependence on area. We also normalize the
temperature scale to the critical temperature of the
bulk film to eliminate any dependences not related to
the narrow wire. When plotted in this way, the R(T )
curves show a relatively orderly progression from essen-
tially temperature-independent for the thinnest wires
(those with Rn/L ≈ 100ohms/nm) to those showing
a rapid fall in resistance with decreasing temperature
for wires with ∼ 3 times greater cross-section, such as
ones with R ∼ 30ohms/nm at Tc. The whole range of
these data were well accounted for, using the theoret-

ically predicted T-dependence based on the Giordano
phenomenology, as reported in [6].
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Fig. 1. (a). R(T) for 18 different samples. (b) Resistance per

unit length as a function of normalized temperature for the

same set of samples.

At about the same time, Golubev and Zaikin [7] pub-
lished a detailed microscopic analysis of the probabil-
ity of quantum phase-slips at T = 0, obtaining results
very similar to those from the Giordano phenomeno-
logical formulation. In Fig. 2, we show a comparison
of their results with the experimental data. Since their
analysis does not give an explicit temperature depen-
dence, we interpolate between T = 0 and Tc using the
same (1 − t)1/2 dependence for the exponent describ-
ing quantum phase-slips as was used in the Giordano
phenomenology.

In making this comparison, the only sample-
dependent parameter is the measured Rn/L. There
are also two parameters of order unity which are the
same for all samples. Although the detailed agreement
is far from perfect, it is impressive how well the sample
dependence is captured with only a single, measured
parameter. This gives us considerable confidence that
the quantum phase-slip term, which dominates below
roughly 1/2 Tc, is, in fact, being observed. Any model
involving only thermally activated processes would
inevitably give an R(T ) dependence that drops faster
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Fig. 2. Comparison of data (solid curves) on 8 representa-

tive samples with the predictions of Golubev-Zaikin theory

(dotted curves). The only free parameters are of order unity:

aGZ = 0.43 and BGZ = 2.5 for the whole family of curves.

and faster as T is lowered, and could not fit the data
on the thinner wires.

Although this general agreement of the data with
these simple models is heartening, two disagreements
deserve comment. Firstly, in a few cases two of the ex-
perimental curves for samples of similar cross-section
cross when plotted vs. T . This could not happen if
there were truly a single parameter characterizing each
sample. However, we have shown by simulations that
if the diameter of the wire fluctuates randomly with a
Gaussian width of ±1.5nm along the length of the wire,
this is sufficient to account for such a crossing. Such a
fluctuation is consistent with TEM photos of similar
wires. The second, and related, disagreement is that
not all the experimental curves have exactly the same
“shape”. There appear to be two “classes”: those show-
ing a transition from negative to positive curvature
with decreasing temperature, as predicted by the the-
ory, and those that do not. This difference could readily
account for a crossing between two curves from differ-
ent classes. As yet, we have not established a convincing
explanation for the two classes, but we are exploring
the possibility that the two classes may correspond to
samples deposited on metallic vs. semiconducting car-
bon nanotubes, which would be expected to give dif-
ferent amounts of damping for the phase-slip process.
This would have little effect on the thermal phase slips
nearer to Tc, but extra damping would be expected to
reduce the rate of the macroscopic quantum tunneling
process responsible for the quantum phase-slips that
dominate at low temperatures.

This possibility raises the whole question of the role
of damping in accounting for the measurements. In gen-
eral, damping strongly reduces the probability of quan-
tum phase slips because it couples the microscopic sys-
tem to the larger classical environment. In the simpler
zero-dimensional system of a Josephson junction (JJ)
shunted by a damping resistance, Schmid [8] showed
theoretically that if the damping resistor R was smaller

than the quantum resistance Rq = h/4e2 ≈ 6.5kohm,
the phase should become localized at T = 0 and the
system would show no voltage or resistance, regardless
of the magnitude of the Josephson coupling energy EJ .
The Helsinki group [9] has devoted considerable effort
to testing this result for a single JJ, and has found ev-
idence for its correctness in junctions with small EJ ,
but for larger values of EJ the resistance predicted by
ordinary fluctuation theory without consideration of
localization is so small that experimentally it is hard
to detect the difference from zero.

An outstanding open question at this time is how
this localization argument might carry over to the case
of a wire. It seems likely that the phase-slip energy ∆F
would be the analog of EJ , but by analogy with the
JJ case, the damping resistance, not EJ , should be the
critical parameter. What is the appropriate damping
resistance for a long wire? The entire resistance of the
wire, as suggested in [5], now seems less likely; another
possibility is the normal resistance of some length com-
parable to ξ , which is the length scale of the phase-
slip process that is the analog of the JJ. In that case,
the damping conductance would have the same depen-
dence on sample parameters as the energy barrier ∆F ,
and it would be hard to distinguish an exponential de-
pendence on ∆F from one on a damping conductance.
In addition to dissipation in the metallic wire itself,
there can be external dissipation coupled electromag-
netically. This issue could be clarified experimentally
by adding a controllable damping conductance in par-
allel with the wire, which would allow the damping to
be varied independently of the energy barrier. Such ex-
periments are planned, but we have no results to report
at this time.

A semantic issue is the definition of “superconduc-
tivity” in a thin wire. In the previous paragraph, we
discussed the issue of whether the resistance would be
zero at the unattainable T = 0 because of damping,
even if the energy barrier to phase slip by itself would
only give an exponentially small, but finite, resistance.
A much more operational, but different, criterion for
superconductivity is simply whether the resistance de-
creases significantly when the temperature is reduced
below Tc. This question can be posed theoretically by
comparing the superconducting resistance due to quan-
tum phase slips at T = 0 with the normal resistance
at Tc. Using our simple phenomenological expression
for quantum phase slip resistance at T = 0, we find
[10] that R(0) should be less than R(Tc) if the normal
resistance of a length of wire approximately 13 ξ long
is less than the quantum resistance. For the coherence
length of 5 nm appropriate to MoGe, this implies a
resistance/length of about 100 ohms/nm, which is in
good agreement with the data in Fig. 1(b). This sug-
gests that the energy barrier to phase slips controls
R(T ) over most of the range, whereas dissipation may
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control the limiting behavior at T ≈ 0.
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