Evidence of superfluidity in double layer 2D electron systems
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Abstract

When two parallel 2D electron gases are sufficiently close together, interlayer Coulomb interactions are of comparable
importance to intralayer ones. If the total number of electrons in the bilayer system equals the number of states
in the lowest spin-resolved Landau level produced by a large perpendicular magnetic field, an exotic many-body
state develops. This state exhibits a variety of remarkable properties including Josephson-like interlayer tunneling
and precise quantization of the frictional drag between the layers. These findings lend strong support to the notion
that this quantum coherent state is an example of a new kind of superfluid, one in which the underlying bosons are
excitons comprised of electrons in one layer bound to holes in the other.
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1. Introduction

A new form of superfluidity was predicted about 10
years ago in theoretical studies of double layer two di-
mensional electron systems (2DES)[1]. Although there
are a number of equivalent ways to describe this new
effect, it may be viewed as arising from a Bose con-
densation of excitons consisting electrons in one layer
bound to holes in the other[2]. From this perspective,
the system is very similar to those excitonic conden-
sates which were predicted much earlier but have yet
to be convincingly demonstrated in experiments[3]. In
the present case however, no valence band holes are
involved; the excitons are formed entirely within the
conduction band of a semiconductor heterostructure.

This new collective phenomenon occurs in the pres-
ence of a large magnetic field B perpendicular to the 2D
planes. The field quantizes the single electron kinetic
energy spectrum into a ladder of discrete, yet highly
degenerate, Landau energy levels. At high enough field
only the lowest such level is occupied with electrons
and a large energy gap to the next Landau level exists.
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Under these circumstances, Coulomb interactions be-
tween electrons can not be treated perturbatively and
numerous possibilities for exotic strongly correlated
many-body states result. The fractional quantized Hall
liquids, which exist in both single and double layer 2D
systems, are the best known, but by no means only,
examples.

The collective state to be discussed here does indeed
exhibit a quantized Hall effect QHE; its Hall resistance
pay is precisely h/e*. In common with all other QHE
states, the longitudinal resistance p,, of the present
system, which reflects energy dissipation, is exponen-
tially small at low temperatures. We emphasize how-
ever, that this is not what is meant by superfluidity
in the present context. As we shall discuss, an ex-
citonic quantized Hall state is believed to exhibit a
unique superfluid mode which is dissipationless (in lin-
ear response) even at finite temperature. More impor-
tantly, this collective state possesses a condensate with
a macroscopic phase variable ¢ in exact analogy to su-
perfluid *He and conventional superconductors. Ordi-
nary QHE states do not possess such a condensate or
quantum phase. This paper will review, superficially,
our recent experiments which strongly suggest that this
new form of superfluidity has, in fact, been observed.
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2. The Quantized Hall Effect in Bilayer
Electron Systems

In its simplest form, the fractional quantized Hall ef-
fect (FQHE), occurs when the density of electrons in
the system, N, is a rational fraction v = p/q of the de-
generacy eB/h of the lowest spin-resolved Landau level
(LL)[4]. In a single layer system the FQHE is only ob-
served at certain filling fractions v = p/q and then only
with ¢ an odd integer[5]. At these special fillings, inter-
actions between electrons lead to the condensation of a
remarkable quantum fluid ground state with an energy
gap to charged excitations. The lowest lying such exci-
tations carry a precise fraction of an electron’s charge.
FQHE states are observed at v = 1/3, 2/5, 2/3, etc.,
but none has ever been reported at v = 1/2, i.e. at half
filling of the lowest LL. The half-filled case is interest-
ing in its own right[4], but the system does not possess
the key energy gap needed for Hall quantization.

In a double layer 2D electron system there are new
possibilities owing to the presence of both intra- and
interlayer Coulomb interactions[4]. The most interest-
ing case studied so far is that in which the individual
layers are each at filling factor v = 1/2. If the layers
are sufficiently close together the system does possess
an energy gap and does exhibit a QHE. In this situa-
tion it is more appropriate to consider the total filling
factor vior = 1/2 4+ 1/2 = 1 rather than the individual
filling factors. Discovered nearly 10 years agol6], it is
by now well established that this QHE state collapses
when the separation d between the layers is increased
beyond a critical value. At large layer separation the
two layers behave independently and, consistent with
the above discussion, no QHE is expected.

The vt = 1 bilayer QHE was suspected early on
to be quite unusual[1,7-9]. The reason for this is em-
bodied in the concept of spontaneous interlayer phase
coherence. In the ground state electrons in the sys-
tem are no longer in one layer or the other, but are
instead in quantum mechanical superpositions of indi-
vidual layer eigenstates. This seems reasonable since
there is always some amount of tunneling through the
barrier layer which separates the two 2D layers. In the
presence of such tunneling one expects hybridization
of the individual layer states into symmetric and an-
tisymmetric linear combinations which are separated
in energy by a gap Asas. The key point, however, is
that at v« = 1 this hybridization occurs even in the
limit of zero tunneling: Coulomb interactions alone are
sufficient, provided that the layers are close enough to-
gether. Indeed, recent experimental work has demon-
strated the existence of the v,s = 1 QHE even when
the single-particle tunneling gap Asas is more than
five orders of magnitude smaller than the mean inter-
electron Coulomb energy.

In the simplest situation, the electrons in the ground
state at vt = 1 have a 50% probability of being found
in either layer. Naturally, if an electron were found to
be at some location in one layer, an immediate subse-
quent measurement would find no electron in the op-
posite layer at the same location in the plane. Thus,
the correlations built into the ground state may be
viewed as excitonic; electrons in one layer are bound
to holes in the other. Of course, one cannot tell in ad-
vance which layer either particle is in. Furthermore,
the 50/50 nature of the electronic states does not fully
specify the quantum state. The same probabilities will
result from any linear combination of the form | 1>
+¢e'?| | >, where the kets | 7> and | |> denote the two
different layer eigenstates and ¢ is a phase. Strong ex-
change interactions between electrons in the same (and
different) layers force the phase to be the same for all
electrons, at least in an ideally clean system at zero
temperature. This constitutes a spontaneously broken
symmetry which may be visualized via an attractive
analogy with easy-plane ferromagnetism. The phase ¢
is a macroscopic quantum variable, very analogous to
that in superfluid * He or an s-wave superconductor.

There is a complicated family of elementary excita-
tions above the v4o¢ = 1 ground state[10]. Vortices in
the ¢ field form one class. These objects, called merons
and anti-merons, carry electrical charge ¢ = te/2,
but usually exist in pairs of charge zero or e. In ad-
dition, a Goldstone collective mode in the system is
associated with the spontaneously broken symmetry.
This mode, which is crudely analogous to an interlayer
plasma mode, is gapless in the long wavelength limit.
Finally, there are superfluid flows in the condensate it-
self. A uniform spatial gradient in ¢ produces this new
kind of superflow, one which consists of oppositely di-
rected electrical currents in the two layers. Within the
excitonic condensate point of view, this corresponds to
a uniform flow of excitons in one direction. The exper-
imental evidence which supports the existence of such
superfluid counterflows is the subject of the remainder
of this paper.

3. Tunneling at vio: = 1

Direct measurements of tunneling between paral-
lel 2DES were first reported by Smoliner, et al.[11].
At zero magnetic field fairly sharp resonances are ob-
served in the tunneling conductance dI/dV . These res-
onances occur when energy levels in the two wells line
up. The sharpness of the resonances results from the
twin constraints of energy and in-plane momentum
conservation which characterize tunneling in high mo-
bility GaAs/AlGaAs heterostructures at low tempera-
tures.



When a large perpendicular magnetic field is ap-
plied, the tunneling current-voltage (I — V') character-
istics are altered qualitatively. The narrow resonances
seen at B = 0 are absent and the tunneling is spread
out over a relatively wide range in energy. This width
reflects the broadening of the Landau levels induced
by electron-electron interactions. In addition, there is
also a region of strongly suppressed tunneling centered
at zero interlayer voltage[12,13]. This Coulomb pseudo-
gap, which is pinned to the Fermi levels of the two
2D systems, demonstrates that electrons cannot be in-
jected (or extracted) from a clean 2D electron system at
high magnetic fields at low energies. This suppression
effect is quite generic, it does not depend upon whether
either 2D system is in a gapped quantized Hall state or
a gapless compressible state like v = 1/2. The impor-
tant point is that tunneling is essentially instantaneous.
An electron attempting to tunnel in must force its way
into an “interstitial” location in the strongly correlated
N-particle fluid. This costs an energy of order the mean
Coulomb energy between electrons. A similar energetic
penalty accompanies the rapid extraction of an elec-
tron. Even though low energy N+1 particle states may
exist (as they do at v = 1/2), tunneling cannot access
them on short time scales. As a consequence, electrons
with less than the mean Coulomb energy simply can-
not tunnel at low temperatures.

Recent experiments have shown that the above ar-
gument fails qualitatively when the effective separa-
tion between the two layers is reduced below a critical
value. Instead of a suppression of the tunneling at low
energy, a dramatic enhancement is observed[14]. This
enhancement is very sharply resonant in energy, typ-
ically only occuring within a few puV of V.= 0. Very
crudely speaking, the Coulombic penalties associated
with the injection and extraction processes associated
with tunneling are cancelled by the excitonic attraction
in the final state. Figure 1 illustrates the stark change in
the I — V tunneling characteristics which occurs when
the phase boundary separating the large separation, no
QHE phase from the small separation, interlayer phase
coherent excitonic QHE phase is crossed. The data in
the figure were obtained from a single sample: the ef-
fective layer separation is adjusted by symmetrically
changing the density of the two 2DESs and adjusting
the magnetic field accordingly to maintain v4o¢r = 1.

The solid trace in Fig. 1 is reminiscent of the dc
Josephson effect in a superconductor tunnel junction.
We stress, however, that so far no clear Josephson effect
has been detected in the 14, = 1 case. The jump in
the tunnel current near zero bias occurs over a finite, if
small, region of voltage. This voltage width falls with
temperature, saturating below about 40mK, but it is
not yet clear whether this saturation is an intrinsic or
extrinsic effect.

The resonant enhancement of tunneling at v = 1
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Fig. 1. Two tunneling I — V characteristics at vior = 1

and T=25mK. Solid curve: Effective layer separation is small
enough to stabilize excitonic QHE phase and Josephson-like
tunneling results. Dashed curve: Strongly suppressed tunnel
current near zero bias that is characteristic of widely sepa-
rated, and thus weakly coupled, layers.

is a direct indicator of the existence of the predicted
linearly dispersing Goldstone mode in the system. In-
deed, measurements of the tunneling in the presence
of a small in-plane magnetic field (added to the large
perpendicular field), have verified the predicted linear
dispersion of this mode[15]. More intriguingly, the en-
hanced zero bias tunneling indirectly suggests that the
novel superfluidity of the v = 1 state does indeed exist.
When an electron tunnels it creates a transient charge
buildup in one layer and a charge deficit in the other
layer. To relax these defects, current must flow away
from the tunneling site in one layer and toward it in
the other layer. This constitutes counterflow, the very
transport mode which is superfluid at v = 1. So, unlike
the situation with tunneling between uncorrelated 2D
layers, it is very easy in the present v = 1 case to relax
the charge defects created by tunneling.

4. Coulomb Drag

Direct generation and detection of superfluid coun-
terflows at vt = 1 is possible, but difficult. As an in-
termediate step we have performed Coulomb drag ex-
periments in which a current is driven through just one
of the layers while voltage drops in the other layer are
recorded[16]. This novel technique provides direct ac-
cess to the interlayer electron-electron scattering rates
in the system.

In the presence of a perpendicular magnetic field,
there are both longitudinal and transverse, or Hall,
drag voltages. Until the present experiments, however,
Hall drag had not been observed. An oversimplified,



30 | I ;e
/ —

- S
g Q
< c
o =3
= 5
g 20 - =
3 3
7] 7
n Q
(&)
i3 3
o 10 o
a) =
= 6
[+
T 2

0

1.5 2.0 25
Magnetic Field (T)

Fig. 2. Quantization of Hall drag at v, = 1. Solid trace: Hall
drag resistance at T=25mK. Dashed trace: Longitudinal drag
resistance. Dotted trace: Conventional longitudinal resistance.

yet instructive, explanation for this is that since no
current is allowed to flow in the drag layer there can be
no net Lorentz force and therefore no voltage build-up
transverse to the current in the other layer. As we now
show, this argument fails in the 1;,; = 1 state with its
strong interlayer correlations.

Figure 2 shows the longitudinal and Hall components
of Coulomb drag in a sample supporting the v, = 1
excitonic QHE state. The drag voltages are converted
into resistances by dividing by the current flowing in
the drive layer. The dotted curve is the conventional
longitudinal resistance of the sample; as expected it
becomes very small in the region of the 140, = 1 QHE.
The dashed curve is the longitudinal drag resistance,
and it too becomes very small around the v = 1
QHE. This vanishing of the longitudinal drag in a QHE
state is not surprising since there is an energy gap to
charged excitations. More interesting, however, is the
behavior of the Hall drag. Instead of being zero, or at
least small, near v+ = 1 it rises up and becomes quite
large. Careful measurements have shown that the Hall
drag is accurately quantized at pgy,p = h/e®. This is
remarkable: No current is flowing in the drag layer and
yet it exhibits a quantized drag voltage transverse to
a current flowing in the opposite layer! This seemingly
unphysical result was in fact predicted[9,17]. Its exis-
tence is due to the strong interlayer Coulomb correla-
tions in the system.

The quantization of Hall drag might not seem so
strange when one remembers that electrons in the sys-
tem are coherently spread between both layers. This
suggests that a electrical currents cannot be restricted
to one layer alone, as a drag experiment requires. Care-
ful examination, however, demonstrates that the net

current flowing in the drag layer is indeed very close
to zero. This apparent paradox is resolved by allowing
for counterflow superfluidity. In addition to a symmet-
ric transport current flowing equally in the two layers,
a excitonic supercurrent develops. In the drive layer
these two currents add to give the imposed current; in
the drag layer they subtract to give zero. Only the sym-
metric current produces a Hall resistance, and it is nec-
essarily quantized at h/e?. Thus, quantized Hall drag
offers a second strong indication that the predicted ex-
citonic superfluidity of the v, = 1 state does indeed
exist,.
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