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Abstract

We investigate a one-dimensional S = 1/2 antiferromagnetic Heisenberg model coupled to quantum lattice vibration
by a quantum Monte Carlo method. For heavy mass, the lattice fluctuation can be regarded to be adiabatic and the
system dimerizes at low temperature. On the other hand, for light mass, the lattice takes a uniform configuration on
the thermal average and magnetic properties coincide with those of the uniform lattice system. These phenomena
can be understood from the difference of the time scale of the motion between the spin and the lattice.
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1. Introduction

The one-dimensional S = 1/2 Heisenberg chain
shows a spontaneous lattice dimerization. When the
mass of the magnetic ion is heavy, the adiabatic treat-
ment for the lattice is valid. In this case, the dimerized
state is realized in the ground state for an arbitrarily
small spin-phonon coupling [1]. We have studied how
the bond alternation develops at finite temperature [2].
On the other hand, for light mass, the lattice dimer-
ization is destroyed due to quantum lattice fluctuation
below a critical spin-phonon coupling [3–6].

In this paper, we study the effect of quantum lattice
fluctuation in the anti-adiabatic case [7]. We investi-
gate a spin-phonon coupled system described by
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We treat all degrees of freedom as quantum variables
which fluctuate in the imaginary time. We use the loop
algorithm for the spin [8] and the recipe introduced
by Hirsch for the lattice [9]. We adopt the periodic
boundary condition for both spin and lattice degrees
of freedom. We fix J = 1, α = 1 and k = 1.

2. Quantum latticefluctuation

In Figs. 1 we show the snapshot of the lattice con-
figuration in the Monte Carlo simulation. For a heavy
mass m = 10000, the lattice behaves adiabatically and
the world-line configuration of the lattice is straight
along the imaginary-time axis. The straight world lines
are parallel with each other and form a dimerized con-
figuration. As a result, we obtain the dimerized lattice
configuration on the thermal average. On the other
hand, for a light mass m = 1, quantum lattice fluctua-
tion causes a curved world line. In this case, we obtain
a uniform configuration on the thermal average, which
indicates that the deviation of the world line destroys
the bond-alternating order.
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Fig. 1. The snapshot of the relative lattice displacement to the

first site at the zero imaginary time for (a) m = 10000 and (b)

m = 1. The data are obtained at T = 0.02 for the system of

N = 64 and the Trotter number M = 384. Only the data from

the first to sixth sites are shown in the figures.
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Fig. 2. The dispersion relation of the spin in the ground state of

m = 10000 (open circle), m = 1 (solid circle) and the uniform

lattice system (solid line). The data are calculated at T = 0.02

for the system of N = 64 and the Trotter number M = 384.

3. Quantum narrowing effect

In Fig. 2 we show the dispersion relation E(q) of the
spin in the ground state. For heavy mass, the system
has an energy gap due to the bond alternation. On
the other hand, for light mass, E(q) coincides with the
uniform lattice system.

Here we study the reason why the largely fluctuating
lattice system gives the same magnetic behavior as that
of the fixed uniform lattice system. In Fig. 3 we show
the imaginary-time correlation functions,

Sspin(q, τ) = 〈eHτSz
q e−HτSz

−q〉, (2)

Sbond(q, τ) = 〈eHτ∆qe
−Hτ ∆−q〉, (3)

where Sq and ∆q are the Fourier components of the spin
and the bond [∆i = α(ui−ui+1)], respectively. We find
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Fig. 3. The imaginary-time correlation function of the spin

(open circle) and the bond (solid circle) for m = 1. The data

are calculated at T = 0.02 and q = π for the system of N = 64

and the Trotter number M = 384.

that the fluctuation of the bond along the imaginary-
time axis is very rapid comparing with the relaxation
of the spin. It indicates that the lattice changes much
faster than the time scale of the motion of the spin.
Thus we conclude that a kind of narrowing effect hap-
pens and the lattice is effectively fixed to be uniform.
We call this phenomenon “quantum narrowing effect”.
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