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Abstract

It is suggested that recent experiments in liquid helium, like single vortex nucleation, transition to turbulent flow
around a sphere at a critical velocity, and cavitation of the liquid in a sound wave belong to the type of “system
failure” experiments which is well known in reliability testing and whose statistical properties are described by
extreme value statistics. This leads to far reaching consequences for the interpretation of the critical velocities and
of the voltage threshold for cavitation.
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1. Introduction

The high-voltage breakdown of an insulator, the
breaking strength of a piece of material, the lifetime of
vacuum tubes or semiconductor devices, e.g., are typi-
cal “system failure” experiments in which a system (a
device consisting of components, a block of material,
etc.) is tested either for its lifetime under constant con-
ditions of operation or by changing some external load
(voltage, temperature, pressure, etc.) until it fails to
function. In all these experiments the so-called “weak-
est link” principle is at work: the system fails when its
weakest part fails. Similarly, when superfluid helium
flows through an orifice or around a solid body, vortex
lines will be generated first at that position on the
solid surface where the barrier for nucleation (or the
critical velocity) is minimal. And in experiments on
cavitation, like in high-voltage breakdown, the thresh-
old will be determined by the weakest nucleation site.
Therefore, it is plausible to analyze these experiments
in a similar way as the other failure experiments.
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2. Extreme value statistics

The statistical analysis of an experiment in which
the minimum (or maximum) of a sequence of indepen-
dent random variables xi (i = 1, ...,n) having a com-
mon cumulative distribution function (CDF) F (x), is
measured (all other values xi need not be observable)
requires the mathematical tool of “extreme value the-
ory” or “extreme value statistics” (EVS) [1]. It is a
central result of EVS to derive the particular extreme
value distribution (EVD) of the minimum in the limit
of large sample size n. Interestingly, only three types of
EVD exist. In standardized form these are, see Fig. 1:

Type 1: H1(x) = 1 − exp (− exp (x)),−∞ ≤ x ≤ ∞,
the “Gompertz” distribution;

Type 2: H2(x) = 1 − exp (−(−x)−α), x < 0, α > 0,
the “Fréchet” distribution;

Type 3: H3(x) = 1 − exp(−xα), x ≥ 0, α > 0,
the “Weibull” distribution.
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Fig. 1. The three extreme value distributions for minima. Note

that H2 and H3, which are shown here for α = 2, are limited to

x < 0 and x ≥ 0, respectively. For maxima three corresponding

EVDs exist: G(x) = 1 − H(−x).

In the single vortex nucleation experiments [2,3] the
Gompertz distribution H1(x) describes the CDF of the
nucleation probability as a function of the flow velocity.
The validity of H1 can be proven not only by a fit to
the data but also by a unique property of H1, namely
an exponential “failure rate” (or “hazard function”)
Λ1(x) which is defined as [1]

Λ1(x) ≡ H ′
1(x)

1 − H1(x)
= − d

dx
ln(1 − H1(x)) = exp(x).

By numerical differentiation of the data of Refs. 2 and
3 the exponential failure rate and hence the validity
of the Gompertz CDF was demonstrated [4]. Also in
the cavitation experiment this EVD is observed for the
excitation voltage for cavitation [5]. In the experiment
on the transition to turbulence around an oscillating
sphere, however, the Weibull distribution with α = 2
(the “Rayleigh” distribution) determines the onset of
turbulence as a function of the velocity increase above
the critical velocity [6,7]. It is significant that this dis-
tribution is limited from below (x ≥ 0): turbulence ex-
ists only above the critical velocity. The second type,
the Fréchet distribution, is not observed in this con-
text, probably because of its property of being lim-
ited from above. The very fact that two EVDs are ob-
served in these three completely different experiments
strongly supports our suggestion of considering these
experiments as further examples of system failure.

The question of which initialCDF F (x) (“parent dis-
tribution”) of the n random variables leads to which
type of EVD is answered by EVS. The set of different
F (x) which have the same EVD is called the “domain
of attraction” of that particular EVD. The domain of
attraction of the Gompertz CDF includes the follow-
ing parent distributions: the normal, log-normal, logis-
tic, Gumbel, and the Gompertz itself (each EVD be-
longs to its own domain of attraction). The Rayleigh

distribution has the gamma, the log-logistic, and the
Rayleigh distribution itself in its domain of attraction.
Consequently, it is impossible to determine the parent
distribution from the measured EVD, only the domain
of attraction will be known, at least to some extent.

3. Data analysis

Suppose the measured CDF is the Gompertz as in
vortex nucleation [2,3] and cavitation [5]. It is deter-
mined by the two parameters an and bn:

H1(x) = 1 − exp (− exp (an(x − bn))), (1)

an is the shape parameter which is related to the
“width” of the CDF and bn is the shift parameter
which enters into the definition of a “critical” velocity
or a “threshold” voltage, respectively, by the median
of the CDF. Both parameters depend not only on the
particular parent distribution but also on the sample
size n. These functions can be found in the literature
[1]. For example, if F (x) is the (standardized) normal
distribution the parameters are given by the following
equations:

an =
√

2 ln(n) , bn = −an +
ln(ln(n)) + ln(4π)

2 an

In this particular case convergence is rather slow and
hence large sample sizes n are necessary for a good fit of
Eq. 1 to the data. Obviously, with unknown parent dis-
tribution and unknown sample size no information can
be inferred from the data except for the statement that
this is how the minimum is distributed. Even in the
most favorable case when F (x) is given by the (stan-
dardized) Gompertz CDF itself, we have [1]:

an = 1 , bn = − ln(n) ,

i.e., the shape parameter is the same for both the par-
ent distribution and the EVD but the shift parameter
remains unknown as long as n is unknown [8].

In case of the transition to turbulence around the
oscillating sphere [6,7] the situation with the observed
Rayleigh distribution is as follows. The shape parame-
ter is an = n for the log-logistic and the Rayleigh, and
n/2 for the gamma distribution while the shift param-
eter is bn = 0 for all three parent distributions [1], i.e.,
we have:

H3(x) = 1 − exp (−anx2). (2)

In the experimental data (∆v/vw)2 stands for anx2,
where ∆v = v − vt is the exceedance of the veloc-
ity amplitude v over the velocity amplitude vt at tur-
bulence. Therefore, the “characteristic” velocity vw is
scaled down by

√
n, i.e., a large n leads to a small vw.
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From the data we have vw = 4.8mm/s, independent of
temperature [6,7]. This small value seems to indicate a
large (and temperature independent) n for this sphere
(radius 124 µm). Clearly, also in this case a knowledge
of n would be extremely important.

4. Conclusions

Two things are clearly necessary for a more detailed
interpretation of the measured EVDs:
1. A physical model for the parent distribution F (x)
of the nucleation sites, barriers, or critical velocities.
In case of vortex nucleation this will include informa-
tion on the structure of the surface, e.g., the statistical
distribution of its roughness [1,9]. How the roughness
then affects the distribution of the nucleation barrier
or the critical velocity is an open question. This prob-
lem appears to be a difficult one.
2. An information on the size effects in the measured
EVDs. Obviously, a small orifice has fewer nucleation
sites than a macroscopic body. Hence, the sample size
n will depend on the geometry. These size effects are
known in extreme value statistics, e.g., in the context
of material strength and high-voltage breakdown [1].
But in the present experiments they have not yet been
investigated because it requires a systematic variation
of the geometry of the orifices or of the microsphere - a
rather tedious task. As a numerical example, the sur-
face area of the Berkeley orifice (circumference times
membrane thickness) is 0.326 µm2[3] which for n =
1000 nucleation sites would imply a mean distance be-
tween the sites of 18 nm (for the Paris orifice the result
is 46 nm), a number which is not unreasonable because
on the scale of the small coherence length of superfluid
helium-4 (0.2 nm) any real surface will be rough. Fur-
thermore, it might well be that in case of the cavitation
experiment n is a random number with its own dis-
crete distribution function, a situation which requires
special treatment in EVS [10].

In summary, without any knowledge of the parent
distribution and of the sample size it is impossible to
extract more information from the measured EVD than
the distribution of the minimum of an unknown num-
ber of random variables having an unknown distribu-
tion function. A quantitative analysis of the measured
shape and shift parameters is not possible.
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