

Out-of-plane dielectric constant of θ -(BEDT-TTF)₂RbZn(SCN)₄ single crystal

K. Inagaki^{a,1}, I. Terasaki^a and H. Mori^b

^aDepartment of Applied Physics, Waseda University, Tokyo 169-8555, Japan

^bInstitute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan

Abstract

The out-of-plane dielectric constant ε of the quasi-two-dimensional organic conductor θ -(BEDT-TTF)₂RbZn(SCN)₄, which exhibits a metal-insulator transition at 190 K, was measured and analyzed from 100 to 300 K in the frequency range 10³-10⁸Hz. Most unexpectedly ε is found to show a significant dielectric relaxation above 190 K, which suggests that insulating and metallic phases coexist above 190 K.

Key words: dielectric constant, metal-insulator transition, organic conductor

1. Introduction

The organic conductor (BEDT-TTF)₂X constitutes a large family of layered organic systems, in which the conducting organic donor molecule BEDT-TTF and the insulating monovalent anion X alternately stack to form a layered structure. Among them, θ -(BEDT-TTF)₂RbZn(SCN)₄ is particularly interesting, in that it exhibits a metal-insulator (MI) transition at $T_{MI}=190$ K with the lattice modulation [1]. This should be different from a conventional Mott transition, because the valence band of this compound is not half-filled, but quarter-filled. Miyagawa *et al.* [2] first pointed out through an NMR experiment that this transition is a charge ordering, and that a charge inhomogeneity grows above T_{MI} , possibly as a precursor of the charge ordering.

We have studied the dielectric response of the parent insulator of the high-temperature superconductors (HTSC) $\text{Bi}_2\text{Sr}_2\text{Dy}_{1-x}\text{Er}_x\text{Cu}_2\text{O}_8$, and have revealed that ε shows a relaxation behavior which was attributed to some kind of charge inhomogeneity in the CuO_2 plane [3]. Thus it would be tempting to

compare ε of HTSC with ε of a material showing a “well-defined” charge ordering.

Here we report on measurement and analysis of the out-of-plane dielectric constant of θ -(BEDT-TTF)₂RbZn(SCN)₄. The observed dielectric spectrum is explained with the Debye description of dielectric relaxation. The most important aspect is that ε above T_{MI} is essentially similar to that below T_{MI} , implying the existence of the charge inhomogeneity above T_{MI} .

2. Experimental

Single crystals were prepared using a galvanostatic anodic oxidation method, and the detailed growth conditions and their characterization were described in [1]. Complex impedance from 10³ to 10⁸ Hz was measured using a two-probe method with a similar technique to Böhmer *et al.* [4], which was described in detail in [3]. Since the physical properties of this material are very sensitive to the cooling rate [1], we slowly cooled the samples at a rate of less than 1 K/min.

¹ E-mail: koichi-inagaki@moegi.waseda.jp

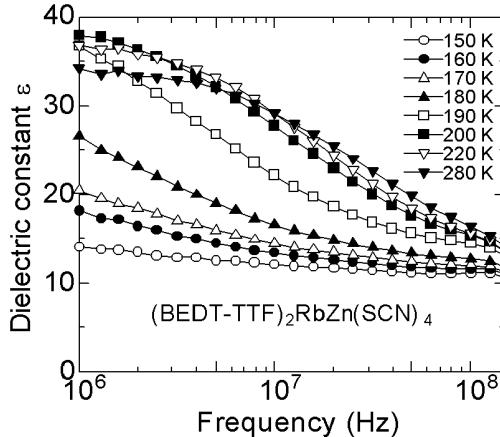


Fig. 1. The out-of-plane dielectric constant of θ -(BEDT-TTF)₂RbZn(SCN)₄ from 10^6 to 10^8 Hz

3. Result and Discussion

Fig. 1 shows ε from 10^6 to 10^8 Hz. ε is large and positive, and decreases with frequency to reach a small constant value. This behavior is qualitatively understood in terms of Debye-type dielectric relaxation given as

$$\varepsilon(\omega) = \varepsilon_{HF} + \frac{\varepsilon_{LF} - \varepsilon_{HF}}{1 + i\omega\tau} \quad (1)$$

where ε_{HF} , ε_{LF} and τ are the dielectric constant in the high-frequency limit, the dielectric constant in the low-frequency limit, and the relaxation time, respectively. While ε is weakly dependent on temperature above T_{MI} , it rapidly decreases with decreasing temperature as soon as the MI transition sets in.

The dielectric behavior below T_{MI} is similar to that for $K_{0.3}MoO_3$ [5] and $Pr_{1-x}Ca_xMnO_3$ [6], which means that charge ordered states cause a dielectric relaxation. We should note that the origin of the charge ordered states are different for different materials. The electron-phonon interaction causes the charge-density wave for $K_{0.3}MoO_3$, whereas the interplay between the orbital/spin ordering and the double exchange causes the charge ordering for $Pr_{1-x}Ca_xMnO_3$. For θ -(BEDT-TTF)₂RbZn(SCN)₄ intersite Coulomb interaction is considered to be an origin for the charge ordered state, as is already reported in other organic salts[7]. According to eq.(1), $1/\tau$ is roughly estimated as the frequency at an inflection point in Fig.1, and then τ is found to increase rapidly with decreasing temperature below T_{MI} .

Next we will discuss the dielectric response in the metallic state above T_{MI} . We should emphasize that ε above T_{MI} is essentially the same as that below T_{MI} . This is seriously incompatible to the dielectric response for usual metals, where ε is negative below the plasma frequency. The positive ε indicates that the screen-

ing motion of charged carriers does not work well. As mentioned above, the NMR experiment suggests the existence of the charge inhomogeneity as a pre-formed charge ordering. If so, the metallic region and the charge-ordered region are randomly distributed, where the dc current is carried by a percolation path of the metallic region. Then τ is dominated by the randomness (percolation path), and can be weakly dependent on temperature, which is in agreement with the temperature dependence of resistivity above T_{MI} [1].

4. Summary

We measured the out-of-plane dielectric constant of θ -(BEDT-TTF)₂RbZn(SCN)₄ from 10^3 to 10^8 Hz. Above the metal-insulator transition at 190 K, the dielectric constant is positive with relaxation behavior, which is very similar to the dielectric response of the parent insulator of high-temperature superconductors. We suggest that insulating and metallic phases coexist in the metallic state of this compound.

Acknowledgements

We would like to thank W. Kobayashi for valuable discussions, and also thank Y. Yoshino for technical support.

References

- [1] H. Mori, S. Tanaka and T. Mori, Phys. Rev. B**57** (1998) 12023.
- [2] K. Miyagawa, A. Kawamoto and K. Kanoda, Phys. Rev. B**62** (2000) 7679.
- [3] T. Takayanagi, M. Kogure and I. Terasaki, J. Phys.: Condens. Matter **14** (2002) 1361.
- [4] R. Böhmer, M. Maglione, P. Lunkenheimer, and A. Loidl, J. Appl. Phys. **65** (1989) 901.
- [5] R. J. Cava, R. M. Fleming, P. Littlewood, E. A. Rietman, L. F. Schneemeyer, and R. G. Dunn, Phys. Rev. B**30** (1984) 3228.
- [6] S. Yamada, T. Arima and K. Takita, J. Phys. Soc. Jpn. **68** (1999) 3701.
- [7] F. Nad, P. Monceau, C. Carcel, and J. M. Fabre, Phys. Rev. B**62** (2000) 1753.