

Unusual Impurity Effects on the Dielectric Properties of $\text{CaCu}_{3-x}\text{Mn}_x\text{Ti}_4\text{O}_{12}$

W. Kobayashi¹ and I. Terasaki

Department of Applied Physics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan

Abstract

$\text{CaCu}_3\text{Ti}_4\text{O}_{12}$ has a large dielectric constant ($\varepsilon \sim 10^4$ at 300 K), which is almost constant above 100 K, followed by a 100-fold reduction below 100 K. The physical mechanism of this anomalous behavior has been extensively investigated. We found that only 2% substitution of Mn for Cu dramatically quenches the huge ε of 10^4 down to 100 over the measured temperature range from 4.2 to 300 K. In usual substitution effects, 2% impurity induces a tiny change in ε of the order of 2%. Thus the present substitution effect suggests that dipole moments interact (probably frustrate) in $\text{CaCu}_3\text{Ti}_4\text{O}_{12}$, which is broken by a small amount of impurities.

Key words: dielectric constant; impurity

1. Introduction

The giant dielectric material $\text{CaCu}_3\text{Ti}_4\text{O}_{12}$ has three mysterious dielectric properties[1-3]. The first is that the dielectric constant is very large values(10000 for ceramics and 80000 for single crystals). The second is that the dielectric constant is nearly constant over a wide temperature range \sim 100-600 K. The third is that the dielectric constant drops rapidly to 100 below about 100 K.

Comparing $\text{CaCu}_3\text{Ti}_4\text{O}_{12}$ with other Ti oxides, BaTiO_3 has a large dielectric constant near the ferroelectric phase transition temperature. However, the dielectric constant strongly depends on temperature, which makes a remarkable contrast with that of $\text{CaCu}_3\text{Ti}_4\text{O}_{12}$. Recently there is a discussion whether the mysterious dielectric properties of $\text{CaCu}_3\text{Ti}_4\text{O}_{12}$ are intrinsic or extrinsic[4]. In $\text{CaCu}_3\text{Ti}_4\text{O}_{12}$ any structural phase transition does not occur, and it is difficult to explain these properties by intrinsic mechanism. Thus recent researches tend to support the extrinsic mechanism[5,6], where the semiconducting-insulating

grain boundary due to the oxide/planar defect makes the dielectric constant very large through surface and internal barrier layer capacitors mechanism[7].

At present impurity substitution effect has not been reported. In this paper, we present Mn substitution effects on $\text{CaCu}_3\text{Ti}_4\text{O}_{12}$, and suggest a possible mechanism for the large dielectric constant.

2. Experimental

Polycrystalline samples of $\text{CaCu}_{3-x}\text{Mn}_x\text{Ti}_4\text{O}_{12}$ ($x = 0, 0.03, 0.06$, and 0.6) and $\text{Ca}_{1+y}\text{Cu}_{3-y}\text{Ti}_4\text{O}_{12}$ ($y = -0.1, -0.05, 0, 0.05$, and 0.1) were prepared by a solid-state reaction. Stoichiometric amounts of CaCO_3 , CuO , Mn_3O_4 , and TiO_2 were mixed, and the mixture was calcined at 1000°C for 12 h in air. The product was finely ground, pressed into a pellet, and sintered at 1090°C for 24 h in air. Dielectric constants and loss tangent of the samples were measured with a parallel-plate capacitor arrangement using an AC four-probe method with an LCR meter (Agilent-4284A) from 10^2 to 10^6 Hz. The temperature was varied between 4.2 and 300 K in a liquid He cryostat.

¹ E-mail:kobayashi-wataru@suou.waseda.jp

3. Results and Discussion

X-ray diffraction pattern of the polycrystalline samples are fully indexed on the structure reported in [8]. The crystal structure of $\text{CaCu}_3\text{Ti}_4\text{O}_{12}$ is the perovskite structure with Cu located at the A site. Since Cu is small ion, TiO_6 -octahedron is highly canted.

Figure 1 shows the dielectric constant (ϵ) of $\text{CaCu}_{3-x}\text{Mn}_x\text{Ti}_4\text{O}_{12}$ ($x = 0, 0.06$). The value of ϵ of $x = 0$ at 1 MHz at 300 K is ~ 10000 , which is roughly equal to the value reported in [2]. We should emphasize that only 2% Mn substitution dramatically suppresses ϵ over the measured temperature range from 4.2 to 300 K. The loss tangent data of $x = 0$ has a peak around 100 K as reported in [2], but the data of $x = 0.06$ has no peak from 4.2 to 300 K. In usual substitution effects, 2% impurity induces a tiny change in ϵ of the order of 2%. Thus the present substitution effect suggests that dipole moments interact (probably frustrate) in $\text{CaCu}_3\text{Ti}_4\text{O}_{12}$, which is broken by a small amount of impurities.

Figure 2 shows the dielectric constant (ϵ) of $\text{Ca}_{1+y}\text{Cu}_{3-y}\text{Ti}_4\text{O}_{12}$ ($y = -0.1, -0.05, 0, 0.05$, and 0.1) at 1 MHz at 300 K. For $y < 0$, ϵ is severely suppressed with y , while it is insensitive to y for $y > 0$. Note that Ca ions form bcc structure in $\text{CaCu}_3\text{Ti}_4\text{O}_{12}$, which remains unchanged for $y > 0$, and is disordered for $y < 0$. Therefore we think the Ca bcc structure plays an important role for the large ϵ .

Ikeda *et al.*[9] reported the anomalous dielectric response of LuFe_2O_4 , which is surprisingly similar to those of $\text{CaCu}_3\text{Ti}_4\text{O}_{12}$. This is explained in terms of the motion of the polar domains with the charge ordering of Fe^{2+} and Fe^{3+} . Thus we think that a similar scenario will be applicable to $\text{CaCu}_3\text{Ti}_4\text{O}_{12}$, though the origin of domains is not clear at present. Then the rapid decrease in ϵ is attributed to pinning or breaking the domain wall.

4. Summary

In conclusion, we present the anomalous substitution effects on $\text{CaCu}_3\text{Ti}_4\text{O}_{12}$, and propose that an origin of the large dielectric constant is a domain-wall motion, similarly to the large ϵ for LuFe_2O_4 .

Acknowledgements

We would like to thank K. Kohn for valuable discussions, and also thank Y. Yoshino for technical support.

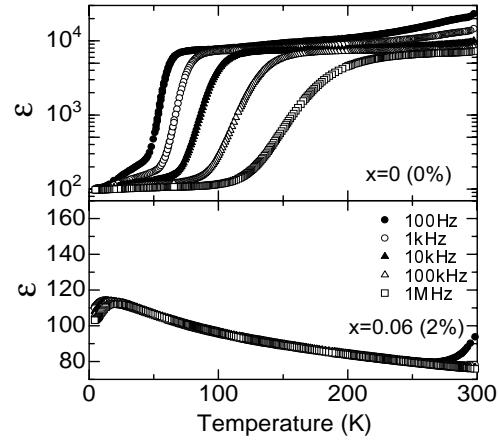


Fig. 1. The dielectric constant of $\text{CaCu}_{3-x}\text{Mn}_x\text{Ti}_4\text{O}_{12}$ ($x = 0, 0.06$)

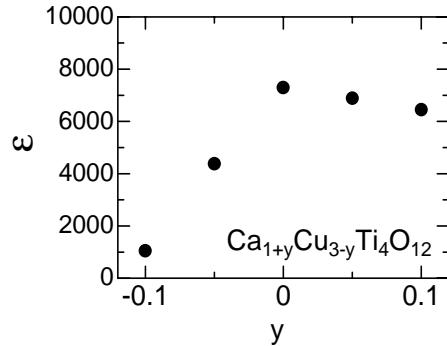


Fig. 2. The dielectric constant of $\text{Ca}_{1+y}\text{Cu}_{3-y}\text{Ti}_4\text{O}_{12}$ ($y = -0.1, -0.05, 0, 0.05, 0.1$) at 1MHz at 300K

References

- [1] M. A. Subramanian *et al.*, J. Solid State Chem **151** (2000) 323.
- [2] A. P. Ramirez *et al.*, Solid State Commun. **115** (2000) 217.
- [3] C. C. Homes *et al.*, Science **293** (2001) 673.
- [4] L. He *et al.*, cond-mat/0110166 (2002).
- [5] D. C. Sinclair *et al.*, Appl. Phys. Lett. **80** (2002) 2153.
- [6] W. Si *et al.*, cond-mat/0205153 (2002).
- [7] Y. Cheng-Fu *et al.*, Jpn. J. Appl. Phys., Part 1 **36** (1997) 188.
- [8] B. Bochu *et al.*, J. Solid State Chem **29** (1979) 291.
- [9] N. Ikeda *et al.*, J. Phys. Soc. Jpn. **69** (2000) 1526.