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Abstract

In two-dimensional honeycomb lattices, electronic states are described by Weyl’s equation for a massless neutrino
when each site is occupied by an electron on average. The system has a topological singularity at the origin k = 0
of the wave vector, giving rise to nontrivial Berry’s phase when k is rotated around the origin. The singularity
causes discrete jumps in the conductivity at the energy corresponding to k = 0 in honeycomb lattices and leads to
the absence of backscattering and a perfect conductance in carbon nanotubes.
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Since the discovery of carbon nanotubes [1], the
transport property of the carbon network of the
nanometer scale has attracted much attention. A
carbon nanotube consists of coaxially rolled two-
dimensional (2D) graphite sheets having a honeycomb
lattice. A honeycomb lattice can be realized at semi-
conductor heterostructures with hexagonal antidot
arrays. In this paper a review is given of effects a topo-
logical singularity present in the Schrodinger equation
on transport properties of such honeycomb lattices
and also of carbon nanotubes.

In a honeycomb lattice, a unit cell contains two car-
bon atoms denoted by A and B as shown in fig. 1. Two
7 bands having approximately a linear dispersion cross
the Fermi level at K and K’ points of the first Brillouin
zone. The effective-mass Hamiltonian for the K point
in a magnetic field B applied perpendicular to the sys-
tem (the zy plane) is given by

e kEr) =, B = (0w

where 0 = (04,0,) is the Pauli spin matrix, v is a
band parameter, k = —iV + (eA/ch), with A the
vector potential given by B = rotA, and F4 and Fp
represent the amplitude at two carbon sites A and B,
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respectively [2,3]. The above equation is same as Weyl’s
equation for a neutrino with vanishing rest mass and
constant velocity independent of the wave vector.

It is known that a neutrino has a helicity and its spin
is quantized into the direction of its motion. In fact, in
the absence of a magnetic field, the eigen wavefunction
and the corresponding energy bands are given by

F L (M apib k
wlr) = ( ) ) explik-r), e (k) = svk, (2)
where L? is the system area, ¢(k) is the angle of the
wave vector kK = (kg, ky), k = |k|, and s = +1 and —1
for the conduction and valence bands, respectively. The
velocity is given by |v| = v/h independent of k and e.
The density of states becomes D(g) = |e|/277?, which
varies linearly as a function of the energy and vanishes
at € = 0. Figure 2 shows the energy dispersion and the
density of states of the system described by eq. (1).

The above wave function acquires Berry’s phase —7
when the wave vector k is rotated around the origin,
although it looks continuous as a function of k [4,5].
This is equivalent to the well-known signature change
of the spinor wave function or a spin rotation operator
under a 27 rotation.

It should be noted that ¢ = —n when the closed
contour encircles the origin k = 0 but ¢ = 0 when
the contour does not contain k = 0. Further, the wave
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Fig. 1. The structure of a honeycomb lattice. A unit cell con-
tains two atoms denoted as A and B (small circles). A honey-
comb lattice can be realized at a semiconductor heterostruc-
ture by fabrication of a short-period hexagonal antidot array
(shadowed big circles).

function at k = 0 depends on the direction of k and
its “spin” direction is undefined. These facts show the
presence of a topological singularity at k = 0. This
topological singularity causes a zero-mode anomaly in
the conductivity of the honeycomb lattice and also the
absence of backscattering in metallic carbon nanotubes
as will be demonstrated below.

A singularity at ¢ = 0 manifests itself in magnetic
fields even in classical mechanics. The equation of
motion gives the cyclotron frequency w. = eBv?/ce,
where v is the electron velocity given by v = |v| = v/h.
The cyclotron frequency w. diverges and changes its
signature at ¢ = 0 [6]. In quantum mechanics k, and
k, satisfy the commutation relation [k, k,] = —i/I?,
where [ is the magnetic length given by /ch/eB.
Semiclassically, the Landau levels can be obtained as
en = +£v/n + 6 (v/27/1) with integer n and an appro-
priate small correction §. Because of the uncertainty
relation, k2 = 0 is not allowed and there is no Lan-
dau level at ¢ = 0. However, a quantum mechanical
treatment of a magnetic field leads immediately to the
formation of Landau levels at e = 0.

We consider, for example, a system with scatterers
with a potential range much smaller than the typical
electron wavelength (which is infinite at € = 0) [7].
The relaxation time in the absence of a magnetic field
becomes 7, ! = 27|¢|W/h with W being a dimension-
less parameter to characterize the scattering strength
given by W = ni((ui)2)/47r72, where u; and n; are the
strength and the concentration of scatterers, respec-
tively, and (- - -) means the average over impurities.

With the use of the Boltzmann transport equation,
the transport relaxation time becomes 7(g) = 279(e)
and the conductivity oo = (e?/27°h)W ! independent
of the Fermi level, i.e., nonzero even at € = 0 where the
density of states vanishes.

In the presence of a magnetic field, the conductivity
tensor o, with 4 = z,y and v = «, y is given by 0,2 =
Oyy = 00/[14 (wer)?] and 04y = —0ye = —ooweT/[1+
(weT)?]. Using the explicit expressions for w. and 7, we
have 0., = 0054/(1 + &%) and Oy = —0052/(1 + &4,
with £ = V2raW (ep/eB), where ep is the magnetic
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Fig. 2. The energy dispersion and density of states in the
vicinity of the Fermi level in a honeycomb lattice.

energy defined by ep = /1. Because 7(er) ™" « |eF|,
the dependence on the Fermi energy e is fully scaled
by eg. Therefore, the conductivities exhibit a singular
jump to zero at e = 0 from o¢ for nonzero e in the
limit of the vanishing magnetic field eg — 0.

A singular behavior appears also in the dynamical
conductivity [8]. The dynamical conductivity is calcu-
lated as

_ e2r4 iep
 8hlmhw +i[h/7(er)]
i, hw+ih/7(hw/2)] —2EF]'

o(w) +1

(3)
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Because h/7(e) x |e|, the frequency dependence is
scaled by hiw/er. The scaling of the dynamical con-
ductivity o(hw/er) shows that o(w,er) exhibits a
singular behavior at the point (w,er) = (0,0). The
correct way is to let w — 0 at each e, leading to a
singular jump of the static conductivity to e?/8h from
oo at e = 0.

A more refined treatment in a self-consistent Born
approximation (SCBA) has been performed for the
magnetoconductivity in a self-consistent Born approx-
imation in which level-broadening effects are properly
taken into account [9]. The result shows that the con-
ductivity at e = 0 is given by 62/7r2h, which is uni-
versal and independent of the scattering strength. Fig-
ure 3 shows some examples of the calculated e de-
pendence of o. It varies smoothly across er = 0 but
exhibits a sharp jump in the limit of weak scattering
(W« 1) from the Boltzmann result o9 for € #0 down
to o = 62/7r2h aterp = 0.

A similar calculation was performed quite recently
for the dynamical conductivity [8]. The frequency de-
pendence is scaled by fiw/er as long as ep #0. When
er is very close to 0, however, the conductivity at w =
0 becomes small and the discrete jump present in the
Boltzmann conductivity is removed. The energy scale
causing this crossover behavior becomes smaller for
smaller W leading to a singular behavior of the dynam-
ical conductivity in the weak scattering limit.

The electronic states of a carbon nanotube can be
obtained by imposing periodic boundary conditions in
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Fig. 3. An example of the conductivity vs the Fermi energy. The
solid lines represent the conductivity calculated in SCBA and
horizontal dotted lines the corresponding Boltzmann result. gg
is an arbitrary energy scale. After Ref. [9].

the circumference direction except in extremely thin
tubes, i.e., ¥(r + L) = 9(r), where L is called the
chiral vector and corresponds to the circumference of
a nanotube. The angle  of L measured from the hori-
zontal direction in fig. 1 is called the chiral angle. Car-
bon nanotubes can be either a metal or semiconduc-
tor, depending on their diameters and helical arrange-
ment. These conditions were first predicted by means
of a tight-binding model. They can be well reproduced
in the k-p scheme discussed above [3].

In the k-p scheme, electrons in a nanotube can be
regarded as neutrinos on a cylinder surface with a ficti-
tious Aharonov-Bohm (AB) magnetic flux determined
by L. In metallic tubes, the flux vanishes and F' sat-
isfies periodic boundary conditions, while in semicon-
ducting tubes, conditions for F' include a nonzero AB
phase. This k-p scheme has been used successfully in
the study of wide varieties of electronic properties of
CN. Some of such examples are magnetic properties
[10] including the AB effect on the band gap, opti-
cal absorption spectra [11], exciton effects [12], lattice
instabilities in the absence [13,14] and presence of a
magnetic field [15], magnetic properties of ensembles
of nanotubes [16], effects of spin-orbit interaction [17],
junctions [18], topological defects [19], and electronic
properties of nanotube caps [20].

The nontrivial Berry’s phase leads to the unique
property of a metallic carbon nanotube that there
exists no backscattering and the tube is a perfect con-
ductor even in the presence of scatterers [5,7]. In fact,
it has been proved that the Born series for backscat-
tering vanish identically [7]. Further, the conductance
has been calculated exactly for finite-length nan-

otubes containing many impurities. The absence of
backscattering has been confirmed also by numerical
calculations in a tight binding model [21].

Backscattering corresponds to a rotation of the k di-
rection by +m. In the absence of a magnetic field, there
exists a time reversal process corresponding to each
backscattering. This process corresponds to a rotation
by +7 in the opposite direction. The scattering ampli-
tude of these two processes is same in the absolute value
but has an opposite signature because of Berry’s phase.
As a result, the backscattering amplitude cancels out
completely. In semiconducting nanotubes, on the other
hand, backscattering appears because the symmetry is
destroyed by a nonzero AB magnetic flux.

An important information has been obtained on the
effective mean free path in nanotubes by single-electron
tunneling experiments [22,23]. The Coulomb oscilla-
tion in semiconducting nanotubes is quite irregular
and can be explained only if nanotubes are divided
into many separate spatial regions in contrast to that
in metallic nanotubes [24]. This behavior is consistent
with the presence of considerable amount of backward
scattering leading to a strong localization of the wave
function. In metallic nanotubes, the wave function is
extended in the whole region of a nanotube because
of the absence of backward scattering. With the use
of electrostatic force microscopy the voltage drop in a
metallic nanotube has been shown to be negligible in
comparison with an applied voltage [25].

At nonzero temperatures, lattice vibrations usu-
ally constitute the major source of electron scattering
and limit the resistivity. Usually long-wavelength
acoustic phonons are most important. These modes
can be described by a continuum model [26-28]. An
acoustic phonon gives rise to an effective electron-
phonon coupling called the deformation potential
Vi = g1(Usa + Uyy) With uze = (Qus/0z) + (uz/R)
and uyy, = Ouy /0y, where ug, uy, and u. represent
lattice displacements in the z, y, and z directions, re-
spectively. This potential appears as a diagonal term.
A very rough estimation gives g1 ~ 30 eV.

Phonon cause also a change in the distance between
neighboring carbon atoms. This gives rise to an off-
diagonal elements Va = go€®" (uzy — Uyy + 2ittzy) with
g2 = (3aB/4)v0, where —v is the transfer between
nearest-neighbors, 3 = —dlInqo/dInb, b is the bond
length, and « is a quantity smaller than unity depen-
dent on microscopic models of phonons. Usually, we
have f~2 [29] and a~1/3, which give g2 ~~0/2 or g2 ~
1.5 eV. This coupling constant is much smaller than
the deformation potential. It corresponds to one given
by Kane and Mele [30] without the reduction factor a.

The diagonal term does not contribute to the back-
scattering as in the case of impurities and only the
much smaller off-diagonal term has some contribu-
tion. The mean free path A is estimated as A =
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Fig. 4. The Fermi-energy dependence of the conductivity for
metallic (solid line) and semiconducting (broken line) CN’s
with g1 /g2 = 10 in units of 04 (0) denoting the conductivity
of an armchair CN with ep = 0. After Ref. [28].

(pa®/3kpTa?B?)L, where L = |L|, p is the shear
modulus of 2D graphite, and a is the lattice constant.
We obtain A ~ 600L at room temperature, which is
larger than 1 pm for thin armchair nanotubes with
diameter ~1.5 nm and increases in proportion to L
with L. This shows that a metallic CN is ballistic even
at room temperature. The situation changes dramati-
cally when other bands start to be occupied. Figure 4
shows the Fermi energy dependence of the conductiv-
ity obtained by solving Boltzmann equation [28].

In summary, in two-dimensional honeycomb lattices
the topological singularity present at k = 0 givesrise to
nontrivial Berry’s phase of the wave function when the
k is rotated around the origin. This singularity gives
rise to discrete jumps in the Boltzmann conductivity
at the energy corresponding to k = 0. This jump is
somewhat smoothed out but prevails practically even if
level broadening effects are properly taken into account
in the self-consistent Born approximation. In carbon
nanotubes, this topological singularity leads to the ab-
sence of backscattering and a perfect conductance even
in the presence of scatterers. Phonons cause backscat-
tering at high temperatures, but effects are very weak
and nanotubes are considered as ballistic conductors
even at room temperature, because the strong defor-
mation potential has no contribution.
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