

Observation of sequence of transitions from 2D to 3D superconducting state in $\text{YBa}_2\text{Cu}_3\text{O}_{6+x}$ single crystal

Zdenek Janu ^{a,b,1}, Georgiy M. Tsoty ^{a,b}, Miloslav Novak ^{a,b}

^a*Institute of Physics, ASCR, Na Slovance 2, 182 21 Prague 8, Czech Republic*

^b*JLTL, V Holesovickach 2, 180 00 Prague 8, Czech Republic*

Abstract

Using the high-resolution SQUID magnetometer we have observed a sequence of narrow transitions from 2D to 3D superconducting state on $\text{YBa}_2\text{Cu}_3\text{O}_{6+x}$ single-crystals. The transitions clearly do not originate in vortex matter or non-homogeneous sample with multiple phases with varying T_c .

Key words: $\text{YBa}_2\text{Cu}_3\text{O}_7$; critical temperature; dimensional crossover; transition

Some related effects were already observed: (i) Krusin-Elbaum *et al.* using induction coil susceptometer operating at 1 MHz, with $\mu_0 H_{ac}$ typically 5 to 10 μT , tracked the peak position in temperature dependence of absorption ($\text{Im}\chi$)[1]. The sharp ($\Delta T \sim 20 \text{ mK}$) step was observed in the irreversibility line at about 1 K below T_c at *dc* fields ($\mathbf{H} \parallel c$) considerably above the lower critical field. This sudden irreversibility collapse, which depends on field orientation, was explained by thermal softening of the vortex core pinning; (ii) Feigelman and Vinokur identified this transition as entangled vortex-liquid state (re-entrant boundary between entangled and lattice phases near H_{c1})[2]; (iii) Safar *et al.* observed drop in H_{c1} , independent of the orientation of the field, anomaly in the relaxation of the remanent moment in field up to 35 mT. They found the vertical boundary in the $H - T$ plane, which was attributed to thermal decoupling of CuO_2 planes[3].

All the above experiments were done in *dc* field of the order of one Tesla. Our data were taken in *dc* field less than 1 μT , thus the vortex density is about six orders lower, but transition temperatures remain unchanged. We used the high resolution SQUID magne-

tometer with a noise level of the magnetic moment $|\mathbf{m}| \sim 100 \text{ fA m}^2$ [4]. Since in our magnetometer the sample is static both with respect to the solenoid and detection system, the disturbing fields are very weak. The external field noise is below 1 nT. The high resolution allows observe details on sample magnetization, which are not smeared by external or applied field noise. The cooling or warming rate of the sample was 1 mK/s. The frequency of applied ac field was $f = 1.5625 \text{ Hz}$. The measurements shown in this paper were obtained on sample with dimensions in *ab* plane $0.29 \times 1.7 \text{ mm}^2$ and thickness 35 μm . The observed signals prove an excellent sample quality since main absorption lines are narrow and magnetic properties at both orthogonal orientations have very small "cross-talk".

In $\mathbf{H} \parallel c$ orientation, see Fig. 1: formation of superconductivity starts below $T_0 = 92.2 \text{ K}$. The $\text{Re}(m_{ac\parallel})$ monotonously decreases with a sudden drop at $T_1 = 91.2 \text{ K}$ and much smaller drop at $T_2 = 89.5 \text{ K}$. Just above T_1 the $m_{ac\parallel}$ is about 30% of its zero temperature value and just below T_1 is 60% which represents sudden increase by $\sim 30\%$ within 10 mK interval. The $\text{Im}(m_{ac\parallel})$ is constant and nonzero, has a high and sharp peak at T_1 . Below T_1 absorption decreases linearly, with a smaller narrow peak at T_2 . Below transition at $T_3 = 87.1 \text{ K}$ the absorption is zero.

In $\mathbf{H} \perp c$ orientation, see Fig. 2: formation of su-

¹ Corresponding author. Present address: Joint Low Temperature Laboratory, Institute of Physics, ASCR, Na Slovance 2, 182 21 Prague 8, Czech Republic E-mail: janu@fzu.cz

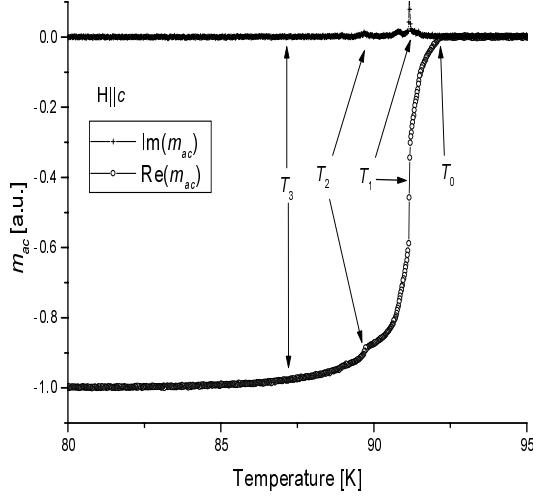


Fig. 1. The $m_{ac\parallel}$ in $\mathbf{H}\parallel c$, $|\mu_0 H_{dc}| < 1 \mu\text{T}$, $\mu_0 H_{ac} = 1 \mu\text{T}$.

perconductivity starts below 92.2 K. The $\text{Re}(m_{ac\perp})$ monotonously decreases with a sudden drop at temperature T_2 . This drop is only half of the low temperature value of the ac moment. The $\text{Im}(m_{ac\perp})$ linearly decreases down to T_1 and becomes constant and nonzero below T_1 . At temperature T_2 occurs a high and sharp absorption peak, followed by a wide peak at T_3 . Below transition at T_3 the absorption is zero. Small increase of $\text{Re}(m_{ac})$ at T_2 is seen in $\mathbf{H}\parallel c$ but large in $\mathbf{H}\perp c$ where suddenly increases from $\sim 20\%$ to $\sim 40\%$ of its zero temperature value.

There is a remarkable symmetry of ac moments round transition temperatures T_1 and T_2 . The zero temperature value of $\text{Re}(m_{ac\parallel})/\text{Re}(m_{ac\perp}) = 12$, which is close to the ratio of the sample cross sections estimated by optical microscopy, $S_{\parallel}/S_{\perp} = 8.3$. Temperature dependencies of ac moments at cooling and warming are identical, without hysteresis. The half-width of absorption lines at T_1 and T_2 is only about 10 mK, whereas $T_1 = 0.99T_0$! At such a temperature one expects effects of broadening or smearing due to a thermal fluctuations. But the ac moment data are perfectly reproducible and without temperature hysteresis. The width of transitions at T_1 and T_2 rapidly increases with amplitude of the H_{ac} , while changes very little with H_{dc} unlike transition at T_3 . We performed measurements at $f/2$ and $2f$ but we did not observe any frequency dependence of ac or dc moments.

The observed transitions are not related to vortex lattice neither change of vortex dynamics nor decoupling of 3D vortex lines into 2D pane-cakes. The transitions reflect change of shielding currents - i.e. electric

Fig. 2. The $m_{ac\perp}$ in $\mathbf{H}\perp c$, $|\mu_0 H_{dc}| < 1 \mu\text{T}$, $\mu_0 H_{ac} = 1 \mu\text{T}$.

charge transport properties. The T_1 transition occurs in ab plane while T_2 and T_3 in c -axis direction. We suggest the following interpretation: T_1 transition shows appearance of 2D superconductivity in CuO_2 layers. Below T_2 the $\text{CuO}_2\text{-Y-CuO}_2$ sandwiches become superconducting. Above T_2 the Y layers are in normal state and this SNS sandwich becomes superconducting via proximity effect. On m_{ac} in $\mathbf{H}\parallel c$ this transition is masked by superconducting CuO_2 layers. Finally, at T_3 the $\text{CuO}_2\text{-Y-CuO}_2$ sandwiches become weakly coupled and the supercurrent is tunneling through the Ba-CuO-Ba barriers. At even lower temperature when this transition is completed the superconductivity is 3D.

Acknowledgements

Work was supported by the Grant Agency of the Czech Republic (No. A1010919 and No. 102/02/0994) and by projects No. AVOZ1-010-914 and K1010104.

References

- [1] L. Krusin-Elbaum, L. Civale, F. Holtzberg, A.P. Malozemoff, and C. Feild, Phys. Rev. Lett. **67** (1991) 3156
- [2] M.V. Feigelman and V.M. Vinokur, Phys. Rev. B **41** (1990) 8986
- [3] H. Safar, P.L. Gammel, D.A. Huse, and D.J. Bishop, W.C. Lee, J. Giapintzakis, and D.M. Ginsberg, Phys. Rev. Lett. **70** (1993) 3800
- [4] G. M. Tsoy, et al., Physica B **284-288** (2000) 2122