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Abstract

We consider the influence of a weak external periodic potential on the stripes at half-integer filling fractions of
the upper Landau levels. We find the ground state by minimizing the cohesive energy for the stripes aligned
perpendicular to the direction of the applied external modulation.
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1. Introduction

Experimental discovery of the guiding center charge
density wave states in partially filled higher Landau
levels [1] was anticipated theoretically by Fogler et.
al [2] by several years. The observations of anisotropic
conductivity between filling fractions ν of 9/2 and 21/2
is now considered to be convincing experimental evi-
dence for the existence of these striped states at these
filling fractions.

It seems natural to study the interplay of interaction-
induced periodicity with an external commensurate (or
incommensurate) periodic potential. Indeed measure-
ments of the magnetoresistance in lateral superlattices
with period close to the expected period of the CDW
have been performed [6]. These experiments show a
minimum with peaks on both sides when the direction
of the current is parallel to the direction of the exter-
nal modulation and a peak when the direction of the
current is perpendicular to it.

In this paper we investigate the structure of the
ground state in the presence of a weak periodic poten-
tial when the modulation is perpendicular to the di-
rection of the stripes. Minimizing the cohesive energy
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we obtain modifications of positions and widths of the
stripes due to the external potential.

2. Higher Landau level electrons in a periodic
potential.

We consider a clean fully spin polarized two-
dimensional electron system in a magnetic field and
a weak periodic potential (amplitude V0) with the
Hamiltonian:

Heff =
1

2LxLy

∑
q

ρ(q)u(q)ρ(−q) + (1)

+
∑
q

V0F (q)

2
ρ(q)δ(q ±Q),

where u(q) is the screened Coulomb potential [3,2],
ρ(q) is the density operator projected on the upper
Landau level, and F (q) is the form-factor.

We first recall that [2] after the Hartree-Fock de-
coupling, the screened Coulomb potential for the uni-
form in the ŷ direction guiding center order parame-
ter, can be approximated by [2]: ueff

HF (x) = u0Θ(2Rc −
|x|), with u0 ≡ h̄ωc

2π2Rc
, where Rc and ωc are the cy-

clotron radius and frequency respectively (the contact
part of the potential that is unimportant for our dis-
cussion has been omitted).
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Fig. 1. Geometry of stripes adjusting to the potential. The

modified stripes are shown in black. For comparison the uni-

form stripes are shown in grey. Left edge of the nth stripe shifts

by a2n, right edge - by a2n+1. The applied external modula-

tion is in the x̂ direction.

For V0 = 0, the ground state has been found to con-
sist of stripes with the period Λ = 2

√
2Rc uniform in ŷ

direction. That is electron states with the guiding cen-
ters X are filled for (n − 1/4)Λ < X < (n + 1/4)Λ,
where n is an integer labelling the stripe.

The cohesive energy of such stripe state has been
found to be: E0

coh = (−3 + 2
√

2)u0Rc.
In this contribution we consider the potential with

the direction of the modulation perpendicular to the
stripes ( Q = (Qx, 0)). In this case each stripe can ex-
pand or shrink as well as move as a whole with respect
to their unperturbed positions to take advantage of the
external potential.

3. Stripes Aligned Perpendicular to the
Direction of Modulation.

With weak, but nonzero external potential strength,
we expect the stripe width and position to change as
the stripes adjust to the potential. To take into account
both the change in the stripe position and width we
introduce the following parameterization for left and
right edges of the nth stripe respectively: (n − 1

4
)Λ +

a2n and (n + 1
4 )Λ + a2n+1. This parameterization is

illustrated on Fig. 1.
We calculate the cohesive energy of the perturbed

stripes and look for positions of modified stripes for
arbitrary values of the cohesive energy Ecoh. We then
find the minimal value of the cohesive energy when
solutions of the assumed form are possible. To this end
we go to the continuum limit, i.e. promote n to the
status of a continuous variable x and introduce f(x) =

a2n. This results in a quadratic in f ′(x) equation with
a nonlinear term. Since corrections to the initial stripe
positions a2n (and, consequently, f(x)) will be seen to

be proportional to
√

V0F (Qx)/u0, the nonlinear terms
can be expanded.

The existence of real solutions to the linearized equa-
tion determines the minimal value of Ecoh when such a
solution is allowed. To the second order in V0F (Qx)/u0

this value is

Ecoh = E0
coh +

V0F (Qx)

QxΛ

(
2 sin

QxΛ

4
− sin

QxΛ

2

)
−

− (V0F (Qx))2

8u0Λ

(
cos

QxΛ

4
− 4

QxΛ
sin

QxΛ

4

)2

(2)

First, an interaction independent, term reflects the cost
of arranging free electrons in stripes in the external
field. The second term is the energy gain due to ad-
justment of stripes to the external potential and is
quadratic in the amplitude of the potential. In the
long wavelength limit (QxΛ � 1) the value of the
cohesive energy takes on the form: Ecoh = E0

coh −
(V0F (Qx))2/72u0Λ

(
QxΛ

4

)4
in agreement with the long

wavelength theory.
Having determined the minimal cohesive energy,

we construct solutions for positions of the modi-
fied stripes. These solutions describe modulations
of the edges’ positions with the amplitude of l0 =

2
QxΛ

√
| 8V0F (Qx)

u0Qx
sin QxΛ

4
|. It is worth noticing that the

amplitude of modulations is nonanalytic in v. When
the external period equal to an integer (commensu-
rate periods) and half-integer multiples of the natural
period Λ, these modulations are periodic.
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