Electrical resistivity of CeTIns (T=Rh,Ir) under high pressure
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Abstract

We have researched the superconducting natures of CeTIns (T=Rh,Ir) under high pressure in terms of electrical
resistivitiy and superconducting phase in pressure-temperature phase diagram were determined for both samples
and those exist in a wide pressure range (1.5 GPa < P < 6.5 GPa :CeRhIns, 0 GPa < P < 5.2 GPa :Celrlns).
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Recently new heavy fermion superconductors,
CeTIns (T=Rh, Ir) were discovered [1,2]. The crystal
structures for both samples are tetragonal HoCoGas-
type structure. In CeRhlns antiferro(AF)-magnetic
order at ambient pressure is eliminated by the pres-
sure at 1.4 GPa and induced the superconductivity at
around 2 K above 1.6 GPa. Celrlns undergoes super-
conducting transition at two different temperatures
in each measurement at ambient pressure. Electrical
resistivity measurement indicates the zero-resistivity
at 1.2K, while it indicates the bulk superconducting
transition at T=0.4 K by Meissner effect of the mag-
netic susceptibility or the jump in the heat capacity.

We have already investigated the Tc-P phase dia-
gram in CeRhlIns [3,4] and the natures in Celrlns un-
der high pressure have been reported by magnetic sus-
ceptibility and specific heat [5], however, above 2 GPa
no measurements have achieved yet. In this work, we
perform the additional measurement of resistivities in
CeRhlIns and Celrlns in order to verify the Tc-P phase
diagram.

Electrical resistivity measurements under high pres-
sure over 3 GPa were accomplished by the diamond-
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anvil-cell (DAC) [6]. The commercial oil (Daphne oil
7373) [7] is used as the pressure medium. Single crys-
tals of CelrIns and CeRhlIns were grown up by Indium-
flux-method and high purity of samples with residual
resistivity ratios of 106 for CeRhIns and 72 for CelrIng
were cut out and selected for the purpose of these mea-
surements. The electrical currents run parallel to the
c-planes for both samples.

The low temperature resistivities in CeTIns (T=Rh,
Ir) do not obey T? law of the Landau Fermi liquid be-
havior in our measurement pressure range. In CeRhlIns
T-dependence of resistivity in low temperature show
T-linear which means the 2D AF fluctuation by SCR
theory [8]. Typically at 4.0 GPa in CeRhIns T-linear
behavior reveal in T¢ < T < 8 K [Fig. 1]. In CelrIns
T-dependences indicating T'-® at 2.2 GPa and 3.1 GPa
revealin T <T <4 Kand Te <T <6 K, respectively
and especially at 3.1 GPa and the magnetic field of 3
T where the superconductivity completely disappears
the power of resistivity is 1.5 at least over 0.3 K [Fig. 2].
In all pressure range resistivity exponents of Celrlns in
low temperature region are within the bound of 1.2 <
n < 1.7 (p=po+aT") at low temperature limits. These
behaviors are approximately compatible with 3-D AF
fluctuation in SCR theory. The difference might orig-
inates from the variation of the ratio of crystal lat-
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Fig. 1. (a) Resistivity at low temperature at 4.0 GPa in
CeRhlIng, which indicate T-linear variation. (b) Logarithmic
plot of resistivity at 3.3 GPa and 3.0 T in Celrlns, of which
exponent is 1.5 at least over 0.3 K.

tice lengths between c- and b-axis (c/a), (c/a=1.611 in
Celrlns < ¢/a=1.621 in CeRhlIns) by the substitution
of Rh and Ir.

The T¢-P phase diagram of CeTlIns (T=Rh, Ir) de-
termined by the temperatures at which resistivities in-
dicate zero value are shown in Fig. 2. In our previous
works for CeRhlIns we had already reported about the
minimum of T¢ at 5.2 GPa in superconducting phase.
However, in this work, superconducting phase exists
in the pressure range of 1.5 GPa < P < 5.2 GPa and
no minimum in superconducting phase is observed by
the additional measurements. This reason is possibly
due to the reduction of the hydrostaticity above 2 GPa
where the pressure medium is predicted to solidify at
room temperature. In Celrlns, we have also confirmed
Tc-P phase diagram and it exists in the pressure re-
gion of 0 GPa < P < 5.9 GPa. T¢ goes on increasing
up to 1.05 K at 2.2 GPa with pressure and exhibits a
broad maximum at around 2.2 GPa < P < 3.1 GPa.
The behavior of T¢ in low pressure region under 2.2
GPa is consistent with the latest reports [5].

In conclusion we have confirmed the superconduct-
ing phase diagrams under high pressure region in
CeTIns (T=Rh, Ir) and the exponents in the low tem-
perature resistivities are 1 for CeRhlns and around
1.5 for Celrlns under the influence of the crystal
structures.
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Fig. 2. Pressure-temperature phase diagram of superconduc-
tivity in (a) CeRhIns and (b) Celrlns. T¢c was determined at
zero resistivity temperature. Superconducting phase diagram
in CeRhlns is different from previous work. Superconductivity
phase in Celrlns exists from 0 GPa to 5.8 GPa and has the
maximum around 2.2 GPa < P < 3.1 GPa.
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