

Electrical resistivity of CeTIn₅ (T=Rh,Ir) under high pressure

Takaki Muramatsu^{a,1}, Tatsuo C Kobayashi^a, Katsuya Shimizu^b, Kiichi Amaya^b,
Dai Aoki^c, Yoshinori Haga^d, Yoshichika Onuki^c

^a*KYOKUGEN, Osaka Univ., Toyonaka, Osaka 560-8531, Japan*

^b*Graduated School of Engeneering Science, Osaka Univ., Toyonaka, Osaka 560-8531, Japan*

^c*Graduated School of Science, Osaka Univ., Toyonaka, Osaka 560-8531, Japan*

^d*Advanced Science Research Center, Japan Atomic Enegy Research Institute, Tokai, Ibaraki 319-1195, Japan*

Abstract

We have researched the superconducting natures of CeTIn₅ (T=Rh,Ir) under high pressure in terms of electrical resistivitiy and superconducting phase in pressure-temperature phase diagram were determined for both samples and those exist in a wide pressure range (1.5 GPa $\leq P \leq$ 6.5 GPa :CeRhIn₅, 0 GPa $\leq P \leq$ 5.2 GPa :CeIrIn₅).

Key words: superconductivity; pressure; electrical; resistivity

Recently new heavy fermion superconductors, CeTIn₅ (T=Rh, Ir) were discovered [1,2]. The crystal structures for both samples are tetragonal HoCoGa₅-type structure. In CeRhIn₅ antiferro(AF)-magnetic order at ambient pressure is eliminated by the pressure at 1.4 GPa and induced the superconductivity at around 2 K above 1.6 GPa. CeIrIn₅ undergoes superconducting transition at two different temperatures in each measurement at ambient pressure. Electrical resistivity measurement indicates the zero-resistivity at 1.2K, while it indicates the bulk superconducting transition at T=0.4 K by Meissner effect of the magnetic susceptibility or the jump in the heat capacity.

We have already investigated the T_C-P phase diagram in CeRhIn₅ [3,4] and the natures in CeIrIn₅ under high pressure have been reported by magnetic susceptibility and specific heat [5], however, above 2 GPa no measurements have achieved yet. In this work, we perform the additional measurement of resistivities in CeRhIn₅ and CeIrIn₅ in order to verify the T_C-P phase diagram.

Electrical resistivity measurements under high pressure over 3 GPa were accomplished by the diamond-

anvil-cell (DAC) [6]. The commercial oil (Daphne oil 7373) [7] is used as the pressure medium. Single crystals of CeIrIn₅ and CeRhIn₅ were grown up by Indium-flux-method and high purity of samples with residual resistivity ratios of 106 for CeRhIn₅ and 72 for CeIrIn₅ were cut out and selected for the purpose of these measurements. The electrical currents run parallel to the c-planes for both samples.

The low temperature resistivities in CeTIn₅ (T=Rh, Ir) do not obey T² law of the Landau Fermi liquid behavior in our measurement pressure range. In CeRhIn₅ T-dependence of resistivity in low temperature show T-linear which means the 2D AF fluctuation by SCR theory [8]. Typically at 4.0 GPa in CeRhIn₅ T-linear behavior reveal in T_C \leq T \leq 8 K [Fig. 1]. In CeIrIn₅ T-dependences indicating T^{1.5} at 2.2 GPa and 3.1 GPa reveal in T_C \leq T \leq 4 K and T_C \leq T \leq 6 K, respectively and especially at 3.1 GPa and the magnetic field of 3 T where the superconductivity completely disappears the power of resistivity is 1.5 at least over 0.3 K [Fig. 2]. In all pressure range resistivity exponents of CeIrIn₅ in low temperature region are within the bound of 1.2 \leq n \leq 1.7 ($\rho = \rho_0 + aT^n$) at low temperature limits. These behaviors are approximately compatible with 3-D AF fluctuation in SCR theory. The difference might originates from the variation of the ratio of crystal lat-

¹ Corresponding author. Tel.: and fax: +81-6-6850-6446; E-mail: muramatu@djebel.mp.es.osaka-u.ac.jp

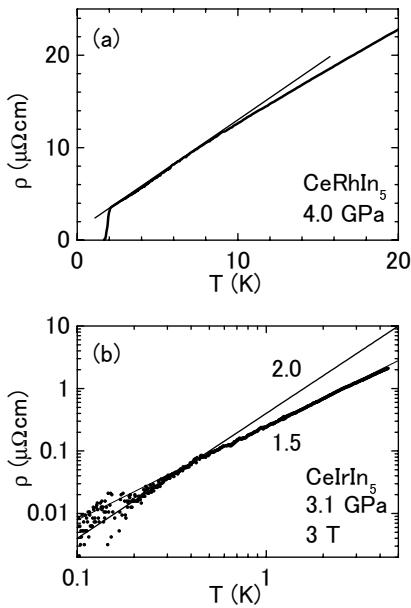


Fig. 1. (a) Resistivity at low temperature at 4.0 GPa in CeRhIn_5 , which indicate T -linear variation. (b) Logarithmic plot of resistivity at 3.3 GPa and 3.0 T in CeIrIn_5 , of which exponent is 1.5 at least over 0.3 K.

tic lengths between c- and b-axis (c/a), ($c/a=1.611$ in $\text{CeIrIn}_5 \leq c/a=1.621$ in CeRhIn_5) by the substitution of Rh and Ir.

The T_C -P phase diagram of CeTIn_5 ($T=\text{Rh, Ir}$) determined by the temperatures at which resistivities indicate zero value are shown in Fig. 2. In our previous works for CeRhIn_5 we had already reported about the minimum of T_C at 5.2 GPa in superconducting phase. However, in this work, superconducting phase exists in the pressure range of $1.5 \text{ GPa} \leq P \leq 5.2 \text{ GPa}$ and no minimum in superconducting phase is observed by the additional measurements. This reason is possibly due to the reduction of the hydrostaticity above 2 GPa where the pressure medium is predicted to solidify at room temperature. In CeIrIn_5 , we have also confirmed T_C -P phase diagram and it exists in the pressure region of $0 \text{ GPa} \leq P \leq 5.9 \text{ GPa}$. T_C goes on increasing up to 1.05 K at 2.2 GPa with pressure and exhibits a broad maximum at around $2.2 \text{ GPa} \leq P \leq 3.1 \text{ GPa}$. The behavior of T_C in low pressure region under 2.2 GPa is consistent with the latest reports [5].

In conclusion we have confirmed the superconducting phase diagrams under high pressure region in CeTIn_5 ($T=\text{Rh, Ir}$) and the exponents in the low temperature resistivities are 1 for CeRhIn_5 and around 1.5 for CeIrIn_5 under the influence of the crystal structures.

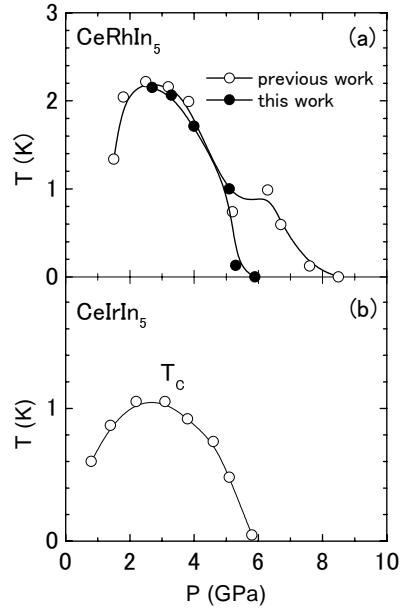


Fig. 2. Pressure-temperature phase diagram of superconductivity in (a) CeRhIn_5 and (b) CeIrIn_5 . T_C was determined at zero resistivity temperature. Superconducting phase diagram in CeRhIn_5 is different from previous work. Superconductivity phase in CeIrIn_5 exists from 0 GPa to 5.8 GPa and has the maximum around $2.2 \text{ GPa} \leq P \leq 3.1 \text{ GPa}$.

Acknowledgements

This work has been supported by Scientific Research (A) from the Ministry of Education, Culture, Sports, Science and Technology in Japan. JASRI.

References

- [1] H. Hegger et al., Phys. Rev. Lett. 84 (2000) 4986.
- [2] C. Petrovic et al., Europhys. Lett. 53 (2001) 354.
- [3] T. Muramatsu et al., J. Phys. Soc. Jpn. 70 (2001) 3362.
- [4] T. Muramatsu et al., Physica B 312-313 (2002) 140.
- [5] R. Borth et al., Physica B 312 (2002) 136.
- [6] K. Shimizu et al., Proc. AIRAPT-17 (1999) 1089.
- [7] H. Murata et al., Rev. Sci. Instrum. 69 (1997) 2490.
- [8] T. Moriya and T. Takimoto, J. Phys. Soc. Jpn. 64 (1995) 960.