

Al Knight-shift measurement in the superconducting state of UNi₂Al₃

K. Ishida*^a, H. Tou**^a, N. Tateiwa***^a, Y. Kitaoka^a, K. N. Sato^b, N. Aso^c, C. Geibel^d, F. Steglich^d

^a Department of Physical Science, Graduate School of Engineering Science, Osaka Univ., Osaka 560-8531, Jpn

^b Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Jpn

^c Neutron Scattering Laboratory, Institute for Solid State Physics, University of Tokyo, Ibaraki 319-1106, Jpn

^d Max-Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany

Abstract

We report ²⁷Al Knight-shift (²⁷K) measurement on a single-crystal UNi₂Al₃ that reveals a coexistence of superconductivity and a spin-density-wave (SDW) type of magnetic ordering ($T_{\text{SDW}} = 4.5$ K). The spin part of ²⁷K, ²⁷K_s does not change down to 50 mK across the superconducting (SC) transition temperature $T_c \sim 0.9$ K. In contrast with the isostructural compound UPd₂Al₃ ($T_c \sim 2$ K), which was identified to be a spin-singlet *d*-wave superconductor, the behavior of ²⁷K strongly supports that UNi₂Al₃ belongs to a class of spin-triplet SC pairing state superconductor.

Key words: heavy-fermion compound; UNi₂Al₃; NMR; Knight shift; spin-triplet superconductivity

In heavy-fermion superconductors, respective isostructural hexagonal compounds UPd₂Al₃ and UNi₂Al₃ are of special interest, since antiferromagnetic (AF) long-range order with $T_N = 14.3$ and 4.5 K is found to coexist with the superconductivity with $T_c \sim 2$ and 1 K, respectively[1,2]. In UPd₂Al₃, neutron-diffraction (ND) experiments[3] revealed a commensurate magnetic structure with a large ordered magnetic moment $\mu=0.85\mu_B$ on the uranium atoms. On the other hand, ND[4] and muon spin rotation (μ SR)[5] experiments revealed that UNi₂Al₃ shows a spin-density wave (SDW) type of ordering and has a tiny magnetic moment of $\sim 0.2\mu_B$ modulated in amplitude within the basal plane.

As for the superconducting (SC) properties in UPd₂Al₃, it was reported that the NMR Knight shift decreases below T_c irrespective of the direction of the magnetic field, and that the nuclear spin-lattice relaxation rate, $1/T_1$ obeys a T^3 law in the SC state. This behavior is consistent with a spin-singlet *d*-wave superconductivity with a line-node gap[6,7]. In contrast, the SC nature in UNi₂Al₃ has been studied only by a few experiments owing to the difficulty of preparing a SC single crystal. Concerning the SC gap structure in UNi₂Al₃, line-node gap was reported from T_1 measurements as in UPd₂Al₃[8]. However, Knight-shift measurements, which give crucial information about the symmetry of the pairs, have not yet been reported due to the lack of the high-quality single crystal.

In this paper, we report measurement of the ²⁷Al Knight shift (²⁷K) in UNi₂Al₃ that allows us to determine the spin state of the Cooper pairs. The NMR measurement was carried out using the high-quality single crystal with the residual resistivity ratio ~ 40 and residual resistivity $\rho_0 \sim 3.6\mu\Omega\text{cm}$. A precise report

¹ Corresponding author. *Present address: Dept. of Phys, Kyoto Univ., Kyoto 606-8502, Jpn. E-mail: kishida@scphys.kyoto-u.ac.jp **Present address: AdSM, Hiroshima Univ., Higashi-Hiroshima 739-8526, Jpn ***Present address: Applied Quantum Physics, Grad. School of Eng. Scie, Kyushu Univ., Fukuoka, 812-8581 Jpn

of the measurement will be published elsewhere[9].

As for ^{27}Al ($I = 5/2$)-NMR spectra in UNi_2Al_3 , when a static field \mathbf{H}_0 is applied to the c axis (c) ($\theta = 0^\circ$), five sharp peaks are well split by the nuclear electric quadrupole interaction. Here θ is defined as the angle between \mathbf{H}_0 and c , which is the principal axis of the electric field gradient. The point symmetry of Al sites in the hexagonal crystal structure of UNi_2Al_3 is not axially symmetric, so that the quadrupole splitting ν_a along a is no longer equal to the quadrupole splitting ν_b along b . For $\mathbf{H}_0 \parallel a$ (\mathbf{H}_a) ($\theta = 90^\circ$), there exist two inequivalent Al sites. For one third of the Al sites \mathbf{H}_0 is parallel to a (denoted as the $\phi = 0^\circ$ site) and for two thirds of the Al sites, the angle between \mathbf{H}_0 and a is $\pm 60^\circ$ (denoted as the $\phi = 60^\circ$ site).

From the $K(T)$ vs $\chi(T)$ plots in the normal state, the hyperfine coupling constants A_{hf} at $\phi = 0^\circ$ and $\phi = 60^\circ$ sites are estimated to be 3.5 and 4.2 kOe/ μ_B respectively, and K_{orb} at both sites is negligibly small. K_s at $\phi = 0^\circ$ and $\phi = 60^\circ$ sites is derived as 0.32 % and 0.39 % at 10K, respectively.

As temperature is cooling down across $T_c(H) \sim 0.75\text{K}$ that was determined by the ac-susceptibility and T_1 measurements as indicated in Figs. 1(a) and 1(b), the $K_s^{\phi=60^\circ}(T)$ does not change as seen in Fig. 1(c). The same result was also obtained for $\mathbf{H}_a = 4887$ Oe. This invariance of the shift for $\mathbf{H}_a = 2438$ and 4887 Oe reveals that the Knight shift, and therefore the spin susceptibility, does not change at all on passing through $T_c(H)$.

Now, we compare the ^{27}Al shift results in UNi_2Al_3 with those in the isostructural compound UPd_2Al_3 . The shift associated with itinerant heavy electrons in UPd_2Al_3 exhibits a distinct decrease $\Delta K_{ab} \sim -0.15\%$, and $\Delta K_c \sim -0.10\%$ in the SC state[6,10,11]. The large residual Knight shift that remains even at the lowest T was ascribed to the localized part of $5f$ electrons that order antiferromagnetically with an atomic-like value of the saturation moment, $\mu \sim 0.85\mu_B$. The ΔK in UPd_2Al_3 reveals that the spin susceptibility of the heavy itinerant electrons diminishes in the SC state due to the formation of spin-singlet Cooper pairs. The value of the Knight shift for these electrons was found to be $K_s \sim 0.14\%$ using $\gamma = 150$ mJ/mol K 2 just above T_c and $A_{\text{hf}} \sim 3.5$ kOe/ μ_B [12]. Here the Fermi liquid relation $\chi = \gamma$ in units of $\hbar = \mu_B = k_B = 1$, and the relation of $K = A_{\text{hf}}\chi/N\mu_B$ between the shift and the susceptibility are used. If the same calculation is applied to UNi_2Al_3 , $K_s \sim 0.16\%$ is calculated, using $\gamma = 140$ mJ/mol K 2 just above T_c [13] and $A_{\text{hf}}^{\phi=60^\circ} = 4.2$ kOe/ μ_B . The value of 0.15% that is the Knight-shift decrease in UPd_2Al_3 is apparently greater than the experimental error (≤ 1 kHz) and is larger enough to be resolved from the present measurements. The invariance of ^{27}K against the onset of superconductivity

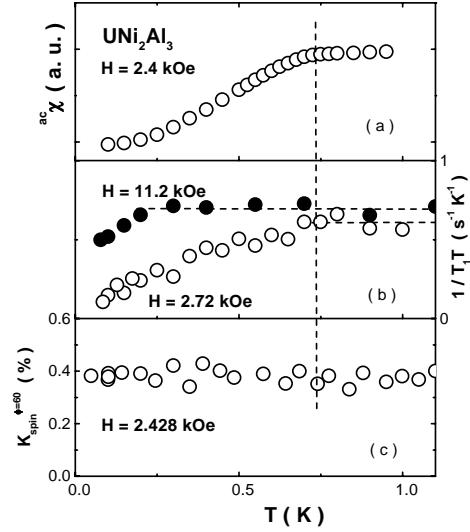


Fig. 1. T dependence of (a) ac susceptibility, (b) $1/T_1T$ for $a \parallel \mathbf{H}_0 = 2.72$ kOe (open circles), and 11.2 kOe (closed circles)[14], and (c) Knight shift at the $\phi=60^\circ$ peak. The vertical dotted line indicates $T_c(2.4$ kOe).

suggests strongly that a spin-triplet pairing state is realized in UNi_2Al_3 , with parallel spin pairing in the ab plane.

This work was supported by the COE Research (10CE2004) in Grant-in-Aid for Scientific Research from the Ministry of Education, Sport, Science and Culture of Japan.

References

- [1] C. Geibel *et al.*, Z. Phys. B **83**, 305 (1991).
- [2] C. Geibel *et al.*, Z. Phys. B **84**, 1 (1991).
- [3] A. Krimmel *et al.*, Z. Phys. B **86**, 161 (1992).
- [4] A. Schröder *et al.*, Phys. Rev. Lett. **72**, 136 (1994).
- [5] Y. J. Uemura *et al.* Physica B **186-188**, 223 (1993).
- [6] M. Kyogaku *et al.*, J. Phys. Soc. Jpn. **62**, 4016 (1993).
- [7] R. Feyerherm *et al.*, Phys. Rev. Lett. **73** 1849 (1994).
- [8] H. Tou *et al.*, Physica B **230-232**, 361 (1997).
- [9] K. Ishida *et al.*, to be published in Phys. Rev. Lett.
- [10] M. Kyogaku *et al.*, Physica B **186-188**, 285 (1993).
- [11] Y. Kohori *et al.*, Solid State Comm. **95**, 121 (1995).
- [12] H. Tou *et al.*, J. Phys. Soc. Jpn. **64**, 725 (1995).
- [13] N. Aso *et al.*, Phys. Rev. B **61**, R11867 (2000).
- [14] An unexpected decrease in $1/T_1T$ was observed below ~ 0.2 K at $H = 11.2$ kOe, which is greater than $H_{c2} \sim 8$ kOe. The precise field dependence of $1/T_1T$ is now under investigation.