

Effect of chemical pressure on the magnetic order in heavy electron system CeRhIn₅

—¹¹⁵In NQR study of CeRh_{1-x}Ir_xIn₅—

Norihiko Yamaguchi ^a, Guo-qing Zheng ^a, Yoshio Kitaoka ^a, J.L. Sarrao ^b, J.D. Thompson ^b,

^aDepartment of Physical Science, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan

^bLos Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Abstract

We have studied the chemical-pressure effect on the Neel temperature (T_N) due to the substitution of Ir for Rh in the layered heavy fermion compound CeRhIn₅ by nuclear quadrupolar resonance (NQR) technique. We find that T_N increases slightly upon replacing Ir for Rh. This feature resembles that in hydrostatically pressurized CeRhIn₅ below 1.0 GPa where T_N shows a similar dependence against pressure.

Key words: heavy fermion; CeRhIn₅; CeIrIn₅; NQR

1. Introduction

In many heavy mass f-electron systems, two major interactions, the long-range RKKY (Ruderman-Kittel-Kasuya-Yosida) interactions between f-electrons and the Kondo interaction between f-orbit and conduction electrons, compete with each other. Since the RKKY and Kondo interactions have a distinct dependency on the magnetic exchange coupling which can be tuned by applying hydrostatic or chemical pressures, a system can usually be tuned to undergo a quantum phase transition from a magnetically ordered state to a non-magnetic state. Around the magnetic quantum critical point (QCP), many unusual properties such as non-Fermi liquid behaviors are observed. The most interesting phenomenon is the appearance of superconductivity. CeRhIn₅ is a newly found heavy fermion compound [1]. The unit cell consists of a layer of CeIn₃, which itself is a heavy fermion compound [2], and a RhIn₂ block. The system orders antiferromagnetically at ambient pressure at $T_N=3.8$ K, with an incommensurate, spiral spin structure along the c-axis [3]. When Rh is replaced completely by Ir, the compound CeIrIn₅ becomes a superconductor [4], with an anisotropic su-

perconducting gap [5]. It is interesting to investigate how the electronic structure evolves in CeRh_{1-x}Ir_xIn₅ with continuously changing the Ir content. Here we report an NQR study about the chemical effect on the Neel temperature caused by the Ir substitution.

2. Experimental Results and Discussion

Single crystals of CeRh_{1-x}Ir_xIn₅ were grown by In-flux method [4]. For NQR measurements, the crystals are ground to powders of modest particle size in order to make the high frequency field penetrate into the sample. NQR measurements were performed using a phase-coherent spectrometer. T_1 was measured by using the saturation-recovery method. There are two inequivalent crystallographic In sites in Ce(Rh,Ir)In₅, the In(1) site in the CeIn₃ plane and the In(2) site in the (Rh,Ir)In₂ block. The results reported below are all taken at the $\pm 3/2 \leftrightarrow \pm 5/2$ transition of the In(2) site around 32 MHz [5].

A typical example of the temperature dependence of $1/T_1$ is shown for $x=0.35$ in Fig. 1. Slightly above $T=4$

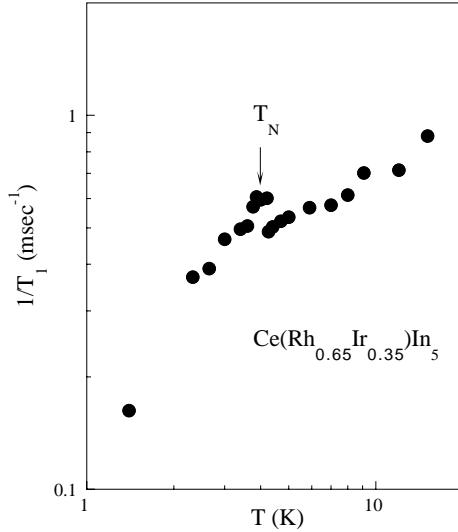


Fig. 1. Temperature dependence of the ^{115}In nuclear spin-lattice relaxation rate $1/T_1$ for $\text{CeRh}_{0.65}\text{Ir}_{0.35}\text{In}_5$ measured at the In(2) site in the $\text{Ce}(\text{Rh},\text{Ir})_2$ block.

K, $1/T_1$ increases with decreasing temperature, due to the slowing down of the magnetic moment toward the phase transition, then decrease rapidly. We define the Neel temperature T_N as the temperature at which $1/T_1$ shows a peak. Such determined T_N in CeRhIn_5 was in good agreement with that inferred from thermal and transport measurements [6,7].

In Fig. 2, the Neel temperature is shown as a function of Ir content, together with the superconducting transition temperature from Pagliuso *et al* [8]. It is seen that T_N increases slightly with increasing Ir content. This feature resembles that seen in CeRhIn_5 under hydrostatic pressure. This indicates that substitution of Ir acts as a chemical pressure in tuning the magnetic exchange coupling. Although it was suggested from the lattice compression that the substitution of Ir for Rh produced a more uniaxial pressure along the c-axis [8], the content of $x=0.35$ is equivalent to the application of $P=1.0$ GPa of hydrostatic pressure in increasing T_N . The future work includes clarifying how superconductivity coexists with the magnetic order at $x=0.35$ which was suggested by transport measurements [8].

In summary, we have carried out ^{115}In NQR measurements in $\text{CeRh}_{1-x}\text{Ir}_x\text{In}_5$ for $x=0, 0.25$ and 0.35 . The spin lattice relaxation rate indicates that T_N increases upon increasing Ir content. This result resembles that observed in hydrostatically pressurized CeRhIn_5 where T_N shows a similar dependence against pressure below $P=1.0$ GPa, suggesting that substituting Ir for Rh is equivalent to applying pressure.

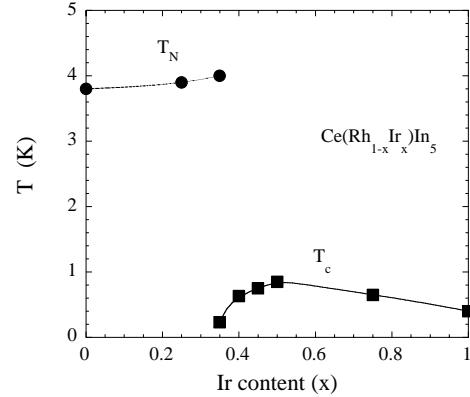


Fig. 2. Ir content dependence of the Neel temperature T_N in $\text{CeRh}_{1-x}\text{Ir}_x\text{In}_5$. The superconducting transition temperature is from Pagliuso *et al* [8]

Acknowledgements

We thank K. Tanabe for assistance in the early stage of the work. This work was supported in part by Grants-in Aid for Scientific Research No. 14540338 and No. 10CE2004 (COE) from MEXT, Japan. Work at Los Alamos was performed under the auspices of US DOE.

References

- [1] H. Hegger, C. Petrovic, E.G. Moshopoulou, M.F. Hundley, J.L. Sarrao, Z. Fisk and J.D. Thompson, Phys. Rev. Lett. **84** (2000) 4986.
- [2] N.D. Mathur, F.M. Grosche, S.R. Julian, I.R. Walker, D.M. Freyee, R.K. Haselwinmmer and G.G. Lonzarich, Nature **394** (1998) 39.
- [3] W. Bao, P.G. Pagliuso, J. L. Sarrao, J.D. Thompson, Z. Fisk, J.W. Lynn and R.W. Erwin, Phys. Rev. **62** (2001) 219901.
- [4] C. Petrovic, R. Movshovic, M. James, P.G. Pagliuso, M.F. Hundley, J.L. Sarrao, Z. Fisk and J.D. Thompson, Europhys. Lett. **53** (2001) 354.
- [5] G.-q. Zheng, T. Tanabe, M. Mito, S. Kawasaki, Y. Kitaoka, D. Aoki, Y. Haga and Y. Onuki, Phys. Rev. Lett. **86** (2001) 4664.
- [6] T. Mito, S. Kawasaki, G.-q. Zheng, Y. Kawasaki, K. Ishida, Y. Kitaoka, D. Aoki, Y. Haga and Y. Onuki, Phys. Rev. **B63** (2001) 220507.
- [7] S. Kawasaki, T. Mito, G.-q. Zheng, Y. Kawasaki, K. Ishida, Y. Kitaoka, D. Aoki, Y. Haga and Y. Onuki, Phys. Rev. **B65** (2002) 020504.
- [8] P.G. Pagliuso, C. Petrovic, R. Movshovich, D. Hall, M. F. Hundley, J. L. Sarrao, J. D. Thompson, and Z. Fisk, Phys. Rev. **B64** (2001) 100503(R).