

# Itinerant electron ferromagnetism of $\text{Fe}_x\text{Co}_{1-x}\text{Si}$ ( $x = 0.3, 0.4, 0.5, 0.7$ ) under high pressure

Katsuya Miura <sup>a,1</sup>, Mamoru Ishizuka <sup>a</sup>, Takeshi Kanomata <sup>b</sup>, Hironori Nishihara <sup>c</sup>,  
Shoichi Endo <sup>a</sup>, Fumihsisa Ono <sup>d</sup>

<sup>a</sup> Research Center for Materials Science at Extreme Conditions, Osaka University, Toyonaka, Osaka 560-8531, Japan

<sup>b</sup> Department of Applied Physics and Informatics, Tohoku Gakuin University, Tagajo, Miyagi 985-8537, Japan

<sup>c</sup> Faculty of Science and Technology, Ryukoku University, Seta 1, Otsu, Shiga 520-2194, Japan

<sup>d</sup> Department of Physics, Okayama University, Tsushima-naka, Okayama 700-8530, Japan

---

## Abstract

The intermetallic compound  $\text{Fe}_x\text{Co}_{1-x}\text{Si}$  has a cubic B20-type crystal structure and shows a weak itinerant electron ferromagnetism in the Fe-concentration range of  $0.2 < x < 0.95$ . We have measured ac susceptibility for  $\text{Fe}_x\text{Co}_{1-x}\text{Si}$  ( $x = 0.3, 0.4, 0.5$  and  $0.7$ ) under various pressures up to 7.5 GPa using a cubic anvil press in the temperature range from 4.2 K to 300 K. It was found that the Curie temperature decreased with pressure  $P$  and was proportional to  $P^{3/4}$  for all the concentrations.

*Key words:*  $\text{Fe}_x\text{Co}_{1-x}\text{Si}$ ; Weak itinerant electron ferromagnetism; High pressure

---

## 1. Introduction

The intermetallic compound  $\text{Fe}_x\text{Co}_{1-x}\text{Si}$  is a disordered solid solution between  $\text{FeSi}$  and  $\text{CoSi}$  with a cubic B20-type crystal structure (space group  $P2_13$ ) for all concentration range [1,2]. Although  $\text{FeSi}$  and  $\text{CoSi}$  are paramagnetic and diamagnetic, respectively [2,3], their solid solution  $\text{Fe}_x\text{Co}_{1-x}\text{Si}$  shows the magnetic ordering in a concentration range of  $0.2 < x < 0.95$  [2,4]. The magnetic ordering in the ground state is of a helical spin structure with a long period ( $> 300 \text{ \AA}$ ) [5]. This helical state, however, is easily transformed to a ferromagnetic state by applying a magnetic field. Several investigations suggest that  $\text{Fe}_x\text{Co}_{1-x}\text{Si}$  is a weak itinerant electron ferromagnet with the magnetic moment of about  $0.1 \sim 0.2 \mu_B$ . The magnetization and the Curie temperature  $T_C$  take the maximum values

of  $\mu = 0.21 \mu_B/\text{F.U.}$  and  $T_C = 65 \text{ K}$ , respectively, at around  $x = 0.6$  [4].

In order to investigate the itinerant electron ferromagnetic character in these alloys, it is a good way to make a measurement of the pressure dependence of  $T_C$  up to several GPa where  $T_C$  would be expected to become 0 K.

## 2. Results and Discussion

We have measured ac susceptibility  $\chi_{ac}$  of  $\text{Fe}_x\text{Co}_{1-x}\text{Si}$  ( $x = 0.3, 0.4, 0.5$  and  $0.7$ ) under various pressures up to 7.5 GPa using a cubic anvil press in the temperature range from 4.2 K to 300 K. Fluorinert was used as a liquid transmitting medium. Experimental results of  $\chi_{ac}$  measurements for the concentration of  $x = 0.4$  under high pressure are shown in Fig. 1. As shown in this figure,  $T_C$  decreases with pressure, where  $T_C$  was deduced from an inflection point of each curve. The gradient of  $\chi_{ac}$  at  $T_C$  becomes steeper above 5.0

<sup>1</sup> Corresponding author. Present address: Research Center for Materials Science at Extreme Conditions, Osaka University, Toyonaka, Osaka 560-8531, Japan. E-mail: miura@hpr.rcem.osaka-u.ac.jp

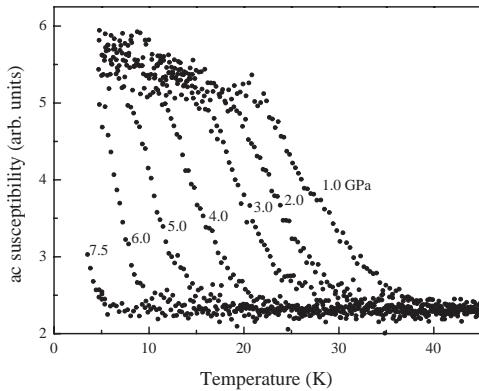



Fig. 1. The ac susceptibility vs. temperature for  $\text{Fe}_{0.4}\text{Co}_{0.6}\text{Si}$ .

GPa. This suggests an appearance of a crossover from the second order to the first order phase transition at around this pressure, which is very similar to the results in MnSi [6]. Figure 2 shows the pressure dependence of  $T_C$  for all samples investigated. The values of  $T_C^{-1} dT_C/dP|_{P=0}$  for  $x = 0.3, 0.4, 0.5$  and  $0.7$  are  $-0.15, -0.11, -0.13$  and  $-0.074$  (GPa $^{-1}$ ), respectively.

The pressure dependence of  $T_C$  was first treated by Stoner:

$$T_C \propto (P - P_C)^{1/2} \quad (1)$$

Taking account of the effect of the spin fluctuations, we have a new dependence of  $T_C$  as follows [7]:

$$T_C \propto (P - P_C)^{3/4} \quad (2)$$

It appears that this relation (2) accounts well for the experimental data at the whole pressure range as shown in Fig. 3, where  $T_C^{4/3}$  is plotted against pressure for all samples.

Concerning the pressure dependence of  $T_C$  for weak ferromagnet, MnSi has been extensively investigated, which has the cubic B20-type structure and has been known as a typical weak itinerant ferromagnet. For MnSi,  $T_C$  decreases rapidly with pressure and collapses towards absolute zero at  $P \simeq 1.46$  GPa [6]. For  $P > 1.46$  GPa, the non-Fermi-liquid state appears [8]. In the low pressure region,  $T_C$  of MnSi obeys the  $3/4$  power law of  $P$  and  $1/2$  power law in the high pressure region. In the present experiment, however, it is confirmed that  $T_C$  of  $\text{Fe}_x\text{Co}_{1-x}\text{Si}$  is in direct proportion with  $P^{3/4}$  for the whole pressure range, the maximum pressure of which is much higher than that of MnSi. The reason has not been clarified yet at this moment why such a difference between  $\text{Fe}_x\text{Co}_{1-x}\text{Si}$  and MnSi has been observed, although they seem to belong to the same weak ferromagnetic group.




Fig. 2. The pressure dependence of  $T_C$  for  $x=0.3, 0.4, 0.5$  and  $0.7$ .

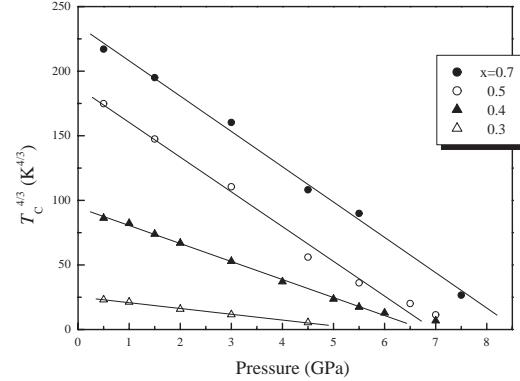



Fig. 3. The pressure dependence of  $T_C^{4/3}$  for  $x=0.3, 0.4, 0.5$  and  $0.7$ .

## References

- [1] D. Shinoda, phys. status solidi A**11** (1972) 129.
- [2] J. H. Wernick, G. K. Wertheim, R. C. Sherwood, Mat. Res. Bull. **7** (1972) 1431.
- [3] V. Jaccarino, G. K. Wertheim, J. H. Wernick, L. R. Walker, S. Arajs, Phys. Rev. **160** (1967) 476.
- [4] K. Shimizu, H. Maruyama, H. Yamazaki, H. Watanabe, J. Phys. Soc. Jpn. **59** (1990) 305.
- [5] K. Ishimoto, Y. Yamaguchi, S. Mitsuda, M. Ishida, Y. Endoh, J. Magn. & Magn. Mat. **54-57** (1986) 1003.
- [6] C. Pfleiderer, G. J. McMullan, S. R. Julian, G. G. Lonzarich, Phys. Rev. B**55** (1996) 8330.
- [7] T. Moriya, A. Kawabata, J. Phys. Soc. Jpn. **34** (1972) 639.
- [8] C. Pfleiderer, S. R. Julian, G. G. Lonzarich, Nature **414** (2001) 427.