

Ultrasonic Study of Orbital and Charge Orderings in $\text{La}_{1-x}\text{Sr}_x\text{MnO}_3 (x = 1/8)$

Hirofumi Hazama ^{a,1}, Terutaka Goto ^a, Yuichi Nemoto ^a, Yasuhide Tomioka ^b,
Atsushi Asamitsu ^c, Yoshinori Tokura ^{b,d}

^a Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

^b Joint Research Center for Atom Technology (JRCAT), Tsukuba 305-0046, Japan

^c Cryogenic Center, University of Tokyo, 113-0032, Japan

^d Department of Applied Physics, University of Tokyo, 113-8656, Japan

Abstract

In order to investigate orbital and charge orderings in perovskite manganite $\text{La}_{1-x}\text{Sr}_x\text{MnO}_3$ with $x = 1/8$ ($\text{Mn}^{3+} : \text{Mn}^{4+} = 7 : 1$), we have measured elastic constants by ultrasonic experiments. $\text{La}_{0.875}\text{Sr}_{0.125}\text{MnO}_3$ shows successive structural phase transitions at $T_s = 275$ K and $T_{co} = 150$ K. Above T_s , the elastic constant $(C_{11} - C_{12})/2$ exhibits a remarkable softening, while C_{44} shows a monotonous increase with decreasing temperature. The softening of $(C_{11} - C_{12})/2$ arises from the coupling of quadrupole moment of e_g orbital in Mn^{3+} ion to elastic strain. Furthermore, the $(C_{11} - C_{12})/2$ and C_{44} exhibit a considerable softening above T_{co} , which is caused by the coupling of charge fluctuation associated with the distribution of $\text{Mn}^{3+} : \text{Mn}^{4+} = 7 : 1$ to elastic strain.

Key words: quadrupole ordering, charge ordering, elastic constant

Perovskite manganite $\text{La}_{1-x}\text{Sr}_x\text{MnO}_3 (x = 1/8)$ shows successive structural phase transitions at $T_s = 275$ K and $T_{co} = 150$ K and a ferromagnetic phase transition at $T_C = 200$ K [1]. These orderings originate in the spin, charge ($\text{Mn}^{3+}, \text{Mn}^{4+}$) and orbital ($d(3z^2 - r^2), d(x^2 - y^2)$) degrees of freedom in $\text{La}_{0.875}\text{Sr}_{0.125}\text{MnO}_3$. The structural phase transition at T_s is accompanied by the Jahn-Teller distortion from pseudo cubic to pseudo tetragonal due to the e_g orbital in Mn^{3+} ion. While the structural phase transition at T_{co} changes the perovskite structure, which is warped to pseudo tetragonal, to pseudo cubic. It has been pointed out that the structural phase transition at T_{co} is charge ordering characterized by the coexistence ratio $\text{Mn}^{3+} : \text{Mn}^{4+} = 7 : 1$ [2]. We paid attention to the coupling of e_g orbital or charge fluctuation of

Mn ions to lattice in $\text{La}_{0.875}\text{Sr}_{0.125}\text{MnO}_3$ and measured the elastic constants by ultrasonic experiments.

Fig. 1 shows the temperature dependence of the elastic constants in $\text{La}_{0.875}\text{Sr}_{0.125}\text{MnO}_3$. Above T_s , the $(C_{11} - C_{12})/2$ shows a remarkable softening, while the C_{44} exhibits a monotonous increase in lowering temperature. These observations are similar to those of $\text{La}_{1-x}\text{Sr}_x\text{MnO}_3 (x = 0.12, 0.165)$ and explained by the quadrupolar susceptibility of a $3d$ electron in e_g orbital doublet [3]. The temperature dependence of the elastic constant $C_{\Gamma 3} = (C_{11} - C_{12})/2$ is described by

$$C_{\Gamma 3}(T) = C_{\Gamma 3}^0 - N g_{\Gamma 3}^2 \frac{\chi_{\Gamma 3}(T)}{1 - g_{\Gamma 3}' \chi_{\Gamma 3}(T)}. \quad (1)$$

Here $\chi_{\Gamma 3}$ is the quadrupolar susceptibility for O_2^0 or O_2^2 of a $3d$ electron in e_g orbital doublet, $C_{\Gamma 3}^0$ is a background and N is the number of Mn^{3+} ions in unit volume. The $g_{\Gamma 3}$ is a coupling constant of quadrupole-strain interaction as $H_{QS} = - \sum_i g_{\Gamma 3}(O_2^0(i)\varepsilon_u + O_2^2(i)\varepsilon_v)$. The O_2^0 and O_2^2 are

¹ Corresponding author. Present address: Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan E-mail: hazama@phys.sc.niigata-u.ac.jp

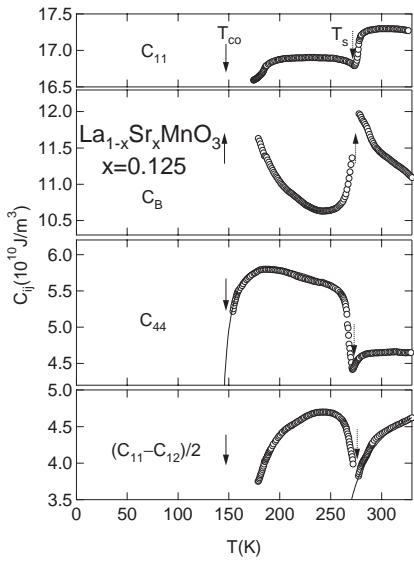


Fig. 1. Temperature dependence of the elastic constants in $\text{La}_{0.875}\text{Sr}_{0.125}\text{MnO}_3$.

quadrupolar operators on $3d$ electron and ε_u and ε_v are elastic strains with Γ_3 symmetry. The $g'_{\Gamma 3}$ is a coupling constant for the inter-site quadrupolar interaction as $H_{QQ} = -\sum_i g'_{\Gamma 3}(\langle O_2^0 \rangle O_2^0(i) + \langle O_2^2 \rangle O_2^2(i))$. The solid line on the $(C_{11} - C_{12})/2$ above T_s in Fig. 1 is the calculated curve with Eq. (1) and we obtained $|g'_{\Gamma 3}| = 462$ K and $g'_{\Gamma 3} = 20$ K. These coupling constants are comparable with those of $\text{La}_{1-x}\text{Sr}_x\text{MnO}_3$ ($x = 0.12, 0.165$) [3].

The other important finding is that both of $(C_{11} - C_{12})/2$ and C_{44} show a softening above T_{co} definitely. These softenings appear around $x = 1/8$, for instance $\text{La}_{0.88}\text{Sr}_{0.12}\text{MnO}_3$ [3]. The quadrupolar susceptibility of an electron in e_g orbital doublet could not lead to the softening of C_{44} above T_{co} . Therefore, the softening of C_{44} above T_{co} originates from the coupling of charge fluctuation of Mn ions associated with the coexistence ratio of $\text{Mn}^{3+} : \text{Mn}^{4+} = 7 : 1$ to elastic strain with Γ_5 symmetry such as $H_{CS} = -\delta Q_{\Gamma 5} \varepsilon_{\Gamma 5}$. Here $Q_{\Gamma 5}$ is the order parameter of the charge ordering. The softening of $(C_{11} - C_{12})/2$ probably arises from the anharmonic coupling of elastic strain with Γ_3 symmetry to the order parameter fluctuation. In the case of charge ordering such as Yb_4As_3 [4], the softening of the elastic constant owing to the charge fluctuation of Yb^{2+} and Yb^{3+} ions is written as $C_{\Gamma}(T) = C_{\Gamma}^0(T - T_c^0)/(T - \Theta)$. The equation can be applied to the softening of C_{44} above T_{co} in the present case. The solid line on the C_{44} above T_{co} in Fig. 1 is the calculated curve with this equation and we obtained the characteristic temperatures $T_c^0 = 140$ K, $\Theta = 137$ K of C_{44} .

Colossal magnetoresistance around T_c is also observed in $\text{La}_{0.875}\text{Sr}_{0.125}\text{MnO}_3$ [5]. Therefore, we have

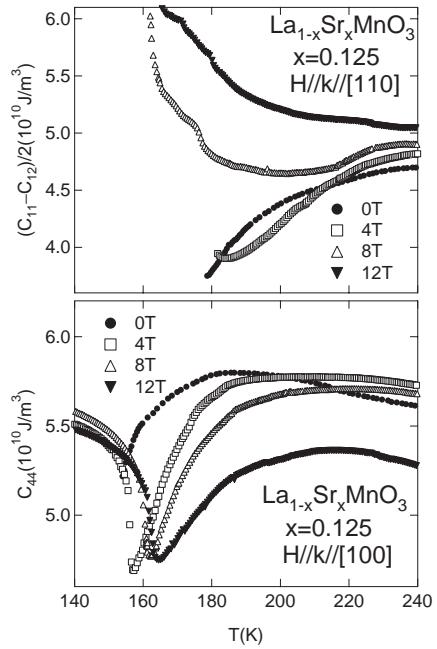


Fig. 2. Temperature dependence of the elastic constants $(C_{11} - C_{12})/2$ and C_{44} around T_{co} in $\text{La}_{0.875}\text{Sr}_{0.125}\text{MnO}_3$ under several magnetic fields along [110] and [100], respectively.

measured the elastic constants in $\text{La}_{0.875}\text{Sr}_{0.125}\text{MnO}_3$ under several magnetic fields. Fig. 2 shows the temperature dependence of the elastic constants $(C_{11} - C_{12})/2$ and C_{44} around T_{co} in $\text{La}_{0.875}\text{Sr}_{0.125}\text{MnO}_3$ under several magnetic fields along [110] and [100], respectively. The C_{44} remains to show a pronounced softening about 10 % under 12 T. This means the charge fluctuation of Mn ions characterized by $Q_{\Gamma 5}$ is still relevant even in fields up to 12 T. In contrast, the softening of $(C_{11} - C_{12})/2$ above T_{co} becomes small gradually with increasing magnetic field. The charge ordering point corresponding to the minimum of C_{44} moves to high temperatures with increasing magnetic field rapidly. The charge ordering of Mn ions in $\text{La}_{0.875}\text{Sr}_{0.125}\text{MnO}_3$ becomes stable under magnetic fields.

References

- [1] H. Kawano, R. Kajimoto, M. Kubota and H. Yoshizawa, Phys. Rev. B 53, 14709 (1996).
- [2] T. Inami, N. Ikeda, Y. Murakami, I. Koyama, Y. Wakabayashi and Y. Yamada, Jpn. J. Appl. Phys. 38, 212 (1999).
- [3] H. Hazama, T. Goto, Y. Nemoto, Y. Tomioka, A. Asamitsu and Y. Tokura, Phys. Rev. B 62, 15012 (2000).
- [4] T. Goto, Y. Nemoto, A. Ochiai and T. Suzuki, Phys. Rev. B 59, 269 (1999).
- [5] H. Nojiri, K. Kaneko, M. Motokawa, K. Hirota, Y. Endoh and K. Takahashi, Phys. Rev. B 60, 4142 (1999).