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Abstract

Low-temperature magnetoresistance (MR) has been studied for undoped and Sn-doped InSb thin films grown on
GaAs(100) substrates by MBE. Sn-doped films show the Shubnikov-de Haas oscillations which reflect a large g-factor
(g*∼ -40 depending on the carrier concentration) of electrons in InSb films. In undoped films, on the other hand,
almost whole carriers fall into the accumulation layer at the InSb/GaAs interface at low temperatures, resulting in
the advent of positive MR arising from the two-dimensional weak anti-localization due to spin-orbit interaction.
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1. Introduction

InSb has been useful for potential device applica-
tions, such as magnetic-field sensors [1,2] and high-
speed devices [3] because of its highest mobility in III-V
semiconductors. For device applications, InSb thin lay-
ers are often grown on semi-insulating GaAs by means
of the molecular beam epitaxy (MBE) [2,4,5] and the
metal-organic chemical vapor deposition (MOCVD)
[6]. However, the growth on GaAs substrates is ac-
companied by high-density misfit dislocations (dan-
gling bonds) at the InSb/GaAs hetero-interface be-
cause of the large mismatch of lattice constants be-
tween InSb and GaAs, producing the extraordinarily
large carrier accumulation at the interface [5–7]. In this
paper, we reveal the characteristic transport phenom-
ena at low temperatures in InSb thin films grown on
GaAs(100) substrates by MBE. Sn-doped films show
the Shubnikov-de Haas oscillations which reflect a large
g-factor depending on the carrier concentration of elec-
trons in InSb films [8]. In undoped films, on the other
hand, almost whole carriers fall into the accumulation
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layer at the InSb/GaAs interface at low temperatures,
resulting in the advent of positive MR which arises
from the two-dimensional (2D) weak anti-localization
(WAL) due to spin-orbit (SO) interaction caused by
the underlying band structure.

2. Results and Discussion

InSb thin films were grown directly on the semi-
insulating GaAs(100) substrate, ignoring the large lat-
tice mismatch of about 14 %. The films studied in this
work are the Sn-doped and nominally undoped ones
whose thickness is 1µm.

In four Sn-doped films with the sheet carrier den-
sity ranging ns = 5.5 1012 ∼ 2.8 1013 cm−2 (degen-
eracy temperature Td = 480 ∼ 1300 K, respectively),
Shubnikov-de Haas (SdH) oscillations which reflect a
large g-factor (g*∼ -40 depending on the carrier con-
centration [8]) of electrons in InSb films have been ob-
served in every configuration of magnetic field at liquid
He temperatures. Fig.1 shows the SdH oscillations ob-
served in the transverse magnetoresistance (MR) un-
der in-plane magnetic-field configuration. The periods
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Fig. 1. SdH oscillations in the transverse magnetoresistance

(MR) under in-plane magnetic-field configuration for four Sn

doped films. Inset: negative MR observed in weak magnetic

fields before the appearance of the SdH oscillations are rela-

tively shown.

in B−1 plots of the SdH oscillations are well explained
with the effective mass of electrons in bulk InSb (m∗=
0.014m). The negative MR observed in weak magnetic
fields before the appearance of the SdH oscillations is
inexplicable at present.

The analysis of temperature dependence of the Hall
coefficient (at B = 0.05 T) for an undoped film shows
the existence of two types of carriers: one is the intrin-
sic carriers in InSb film and the other is low-mobile
carriers in the accumulation layer at the InSb/GaAs
interface which dominate the low-temperature trans-
port [5,6,9]. Effective thickness d of the accumulation
layer is estimated as ∼18 nm from the magnetic field
(∼ 7.5 T) where the classical MR with B2 dependence
starts (2dlB) under in-plane field configuration.

The positive MR data (the decrease of sheet con-
ductance) in magnetic fields perpendicular to the film
plane are shown in Fig. 2. The low-temperature MR
shows a steep rise in weak magnetic fields arising from
the WAL due to SO interaction caused by the under-
lying band structure, reaching a maximum at abut 0.3
T. After that it gradually decreases taking a minimum
and finally increases with increasing magnetic field.
The maximum of the MR becomes smaller (but recog-
nizable) as temperature increases to about 80 K. These
MR data can be explained by the 2D WL theory in-
cluding SO and spin-flip scattering time (τso and τs)
[9]. The best fits cannot be obtained, however, without
taking the Zeeman effect into account [9]. In order to
improve the fits, it is plausible that the interplay be-
tween the Zeeman effect and SO scattering should be
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Fig. 2. Decrease of the sheet conductance in magnetic field

perpendicular to the film at various temperatures.

taking into account in the final analysis [10] because
of the large g-factor of electrons in InSb films. Rough
estimates for inelastic scattering time τi as well as τso

and τs have been made from the fits without the Zee-
man effect for the present: τso ∼ 5 10−13 s, τs ∼ 10−9

s and τi T−2 (for T 1K) . The T−2 dependence of τi

appears to reflect the electron-electron interaction in a
2D system in the pure limit.
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