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Abstract

We investigate the periodic Cogblin-Schrieffer model in terms of the functional integral formalism, taking into
account the one-loop corrections. We determine the order parameter corresponding to heavy fermion state for the
symmetric case with isotropic hybridization, and calculate the thermodynamic quantities such as specific heat and
susceptibility. We show how the one-loop corrections modify the thermodynamic quantities.
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In order to describe the heavy-fermion state, we have
investigated the periodic Cogblin-Schrieffer (PCS)
model by applying the mean-field approximation
(MFA)[1] and the one-loop approximation (1LA).[2]

In ref. [1], we have shown that the metamagnetic-
like behavior of CeRu2Si2 and the non-Fermi-liquid-
like behavior of CeNiaGez can be described from the
same origin, the singularity of |w|~!/2 in the density
of quasi-particle states for the case with anisotropic c-
f hybridization. In the MFA, there appears the phase
transition between the heavy-fermion state and the lo-
calized state. Such a transition however has not been
observed experimentally. It is therefore of great inter-
est to examine how the transition is modified by cor-
rections to the mean-field solution.

In ref. [2], we have developed the renormalized per-
turbation theory with respect to the coupling constant
J employing the functional integral method. We con-
sidered the simple case with the isotropic mixing at
no applied magnetic field, for which the free energy
and the self-consistent equation for the order parame-
ter were examined by the 1LA. We have shown that, if
phase fluctuations are gauge fixed by Anderson-Higgs
mechanism similarly to superconductivity, [2—4] the
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heavy-fermion state is more stabilized due to the cor-
rections. In this paper we present the temperature de-
pendence of the specific heat and susceptibility in the
1LA and discuss the fluctuations effects on these quan-
tities.

We make a brief summary of our perturbation ex-
pansion for the PCS model in ref. [2] and use the same
notations therein. The PCS model is given as[1,5]

H= Z €kc;rmcka + Z(Ef + En) fly fine
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We employ the auxiliary field method, in which Fermi
fields are integrated out and then Bose fields are
parametrized as ¢; = oo + (pi +1im;)/V/2, where oo, pi
and 7; are the mean-field value, the amplitude and the
phase components of the fluctuations, respectively.
Then we obtain the Helmholtz free energy as

F=uN,+ JNoj — kT trlog Gy
kT log<e" log(1+(§01f4f)>7 (2)

where N, is the total number of the electrons, and
the functional integrals over the Bose fields should be
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Fig. 1. Order parameter US as a function of T'. The solid line
shows {0'(()1)}2 in the one-loop approximation and the dashed

line {U(()o)}2 in the mean-field approximation.
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Fig. 2. Specific heat divided by temperature C /T as a function
of T'. The solid line shows C(l)/T in the one-loop approxima-
tion and the dashed line C(O)/T in the mean-field approxima-
tion. We set kp = 1.

performed, which is denoted by (- - -). Here we consider
the one-loop corrections to the free energy, which is
given by

AF(l)(UO) = %kBT<tr(GoMf)2>~ (3)

The p and the 7 fluctuations contribute separately to
give

AFS)(00) = NJ[1F EUSKJQM(US)], (4)
Kn(o8) =) 2830 (wn) fw-), (5)
k,n

J(wT - E]M)Ik
(wT — EM)2 + J203[k7

A (wr) =

where — of eq. (4) is for the p mode, whereas + for
the m mode, and f(w-) the Fermi distribution func-
tion. Note that K3;(c8) is an increasing function with
respect to oo. Therefore, if only the radial (p) fluctua-
tions are effective, the self-consistent order parameter
09 increases from the mean-field solution.

We consider here the simple symmetric case (Ey =
0) with an isotropic mixing (I = 1), and take J/D =
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Fig. 3. Susceptibility x as a function of T'. The solid line shows
X(l) in the one-loop approximation and the dashed line x(o)
in the mean-field approximation. We set g5 = up = My = 1.

1/6, where D is the half width of the conduction band.
Figure 1 shows the temperature dependence of the
square of order parameter {a(()l)}g7 which is propor-
tional to the hybridization gap, in comparison with
that of the mean-field solution {o{" }2. The critical
temperature Tc(l) in the 1LA is higher than 7}(0) in the
MFA. The critical index of {c{"}? is 1, which is as
same as 1 for {0'(()0) }2. Note that this result differs from
that in ref. [2], in which we made a mistake in numer-
ical calculation.

We obtain thermodynamic quantities by differenti-
ating free energy with respect to temperature and mag-
netic field. The temperature dependence of the elec-
tronic specific heat coefficient C/T for the 1LA and
the MFA are shown in Fig. 2 in comparison with that
in the MFA. Note that the integration of C'/T over T
from 0 to Tt is 2 log 2 for both the cases. Figure 3 shows
the temperature dependence of the susceptibility x.

We observe that the one-loop correction term AF,S1
is effective to increase og, whereas it scarcely con-
tributes to C'//T and x; namely, the behaviors of C/T
and y in the 1LA are dominated from the expressions
of the MFA with the dressed op, and the correction
terms of the 1LA are negligibly small.
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