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Abstract

We have studied fluxoid distributions and superconducting transition temperature of honeycomb superconductive
networks with edges in the magnetic field making use of the de Gennes-Alexander equation. In honeycomb networks
with edges, the suppression of superconducting transition temperature in the magnetic field is smaller than that of
networks without edges. In the weak magnetic field, fluxoids emerge from center of the network. As the magnetic
field increases, fluxoids are distributed parallel to edges.
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Multiply connected superconductors provide stages
of macroscopic phase coherent effect such as the mag-
netic flux quatization. Although there are many ways
of flux quatization around an arbitrary loop on a su-
perconductive region, there exists a small number of
thermally stable arrangements in a given external mag-
netic field. It is reported that the magnetic field depen-
dence of critical temperature of superconducting net-
work has a characteristic fine structure with a back-
ground of broad Little-Parks oscillation [1,2].

Recently, local super-currents in superconducting
films with triangular micro-hole lattice is studied with
use of the SQUID [3]. It is reported that near the
critical temperature, the magnetic flux tends to form
pararell lines.

In this paper, we theoretically investigate fluxoid
configurations of honeycomb superconductive network
that consists of strands with length a in the x-y plane
immersed in applied magnetic field H = (0, 0, H0)
making use of the de Gennes-Alexander network equa-
tion [4].

For the honeycomb network, the network equation
is expressed by
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Fig. 1. A fluxons configuration in the periodic boundary con-

dition at φ
φ0

= 2
5 .
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j

∆j exp (iγi,j) = ∆i cos
a

ξ(T )
(1)

where summation of j is the sum over the nodes con-
necting by strands with node i, ni is a number of
strands connecting with node i, ∆i denotes order pa-
rameter at node i. ξ(T ) is the Landau-Ginzburg coher-
ence length. The temperature dependence of ξ(T ) near

the Tc can be written as ξ(T ) = ξ0/
√

1 − T/T0, where
T0 is the zero field transition temperature and ξ0 is the
coherence length at zero temperature.

The phase factor γi,j is defined as,
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Fig. 2. A fluxons configuration in the network with edge com-

posed of 10 × 10 = 100 hexagons at Φ
Φ0

= 1
3 .

γi,j =
2πΦ

Φ0

j∫
i

Ads, (2)

where Φ0 is the flux quantum. The integration per-
forms along the strand. In the following discussion,
we express the intensity of external magnetic field as
Φ
Φ0

, where Φ is the external flux per a hexagon, Φ =

(3
√

3/2)a2H0.
By solving eigenvalue equation of Eq.1, we can de-

termine the superconductive transition temperature.
The transition temperature of network with periodic

boundary condition shows dip structures at Φ
Φ0

= 1
3
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On the other hand, we cannot found these structures
in networks with edges. It is also found that decrease
of transition temperature due to the applied magnetic
field is smaller than that of the network with the peri-
odic boundary condition.

To find fluxons distribution, we solve Eq. 1 and trace
the spatial variation of phase ∆ along superconductive
loops. One of fluxons arrangements of the network with
the periodic boundary condition (edgeless network) for
Φ
Φ0

= 2
5 is shown in Fig.1. Fluxons are arranged in

periodic parallel lines and the total flux pass through
the network equals to external flux.

On the other hand, in the network with edge(without
periodic boundary condition), fluxons tend to line up
forming network edge’s shape(Fig. 2). In the weak
magnetic field ( Φ

Φ0
∼ 1

N , where N is the number of
hexagons composing the network), fluxons are located
near the center of the network. It is impossible in
the weak field that fluxons are located near the edge,
because arrangements of fluxons tend to form similar
shapes of the network edge, if fluxons are located near
the edge, it is necessary large number of fluxons.

The total flux pass through the network with edge is
not the same as external flux. The difference between
the total flux and the external flux ∆Φ is shown in
Fig.3. Multiply connected networks are able to create
or annihilate the flux more than one flux quantum. In
the single connected network, ∆Φ should be in −1

2 <
∆Φ
Φ0

< 1
2
.

In conclusion, the existence of edges changes super-
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Fig. 3. The difference of the flux pass through the 10×10 = 100

hexagons network and external flux.

conductive transition temperature and fluxons config-
urations from those of edgeless network with the peri-
odic boundary condition.
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