Effect of pressure on first-order valence transition of Yb_.YInCuy
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Abstract

YbInCuy exhibits a first-order valence transition at Ty~ 42 K with 0.5% increase of volume. The inherent chemical
pressure in Ybi_ YxInCuy system is discussed as negative on valence transition of YbInCuw. The external pressure
effect on Hy of Ybi_Y«InCuy is measured as ¥x -1 T kbar~!.

dpP

Key words:
PACS: 71.20.Eh, 71.28.4+d, 75.20.Hr, 75.30.Mb

magnetization measurement; valence transition; pressure effect; YbInCuy

1. Introduction

YbInCuy exhibits a first-order valence transition
from the Yb®" state to an intermediate valence (IV)
state at transition temperature Ty~ 42 K with abrupt
changes in lattice volume, meanwhile the IV state
can be changed to the Yb?T state at transition mag-
netic field Hya 33 T [1-3]. Pressure effect on T\ of
YbInCuy, ddTP" ~ -2 K kbar™?, is consistent with favor-
ing the smaller Yb3*" state [4,5]. The negative inher-
ent chemical pressure (Pin) obtained by substituting
Yb with a larger ion increases T\ significantly [2,4].
However, Ybi1_xYxInCus is an exceptional system:
though the Pi, produced by Y-substitution is nega-
tive, Ty and H, decrease as x increases [6-8]. In this
work the effect of external pressure (Pex) on valence
transition of Yb1_xYxInCus was investigated by mea-
surement of magnetization under various fixed high
pressures using an induction method. According to the
x-ray-diffraction analysis, the single-crystalline sam-
ples grown from the InCus-flux are single phase with
AuBes-type structure. The lattice parameters (a) were
calculated using (422), (333), and (440) reflections.
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2. Results and Discussion

For Ybi_xYxInCus, the concentration dependence
of a is shown in Fig. 1. YbInCus has the compress-
ibility of k= 0.99 Mbar~" [5], if the value of % is
0.03 for x< 0.3, the effect of Y-substitution is ddpjc“ =
-12 kbar. The Pi, effect on T, can be estimated as
(2L+);,= 24 K. The concentration dependence of calcu-

dx
lated Ty for Yb1—xYxInCuy has been plotted in Fig. 1.
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Fig. 1. Concentration dependences of a (o), Ty (e) determined
from magnetic susceptibility derivative 2% measurements and
T, (dashed line) calculated from Pj, for Yb;_4Y«InCuy. The
inset is the temperature dependences of ZJT- The straight solid
lines are to guide the eye.
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Fig. 2. The magnetization derivatives of ‘(ii—l\é[ vs H for x= 0, 0.1

under various Pex at 4.2 K. The inset shows pressure depen-

dences of Hy determined from ‘(ii—l\}/ll under various fixed Pex. The

solid symbols are H, determined by increasing-field sweeps, the
empty symbols are H, determined by decreasing-field sweeps
(see text for details). The lines are to guide the eye

The temperature dependence of magnetic susceptibil-
ity derivative % is displayed in the inset of the Fig. 1.
The concentration dependence of T, determined from
the maxima of % is also plotted in the Fig. 1. Ty
shifts to the low-temperatures (LT) as (%4L%)exp= -
140 K. The critical concentration x. is around 0.3.
At x< 0.3, besides Pi, effect, the substitution effect
(df—x")sub should contribute to suppress Ty. According
t0 (L) exp=(%2% )sub+ (%52 )in, Y-substitution effect
is estimated as (ddT—x")sub: -164 K, which can be ex-
plained by the destabilization of the Kondo coherent
state at LT [7,8].

High magnetic field (H) is able to change the IV state
into the Yb3T state at H, and the hysteresis is observed
in the high-field magnetization curves in consequence
of afirst-order character of the transition [3]. The tran-
sition occurs at higher H in increasing-field sweeps as
compared to decreasing-field sweeps. We show the mag-
netization derivatives 3_1\}/1[ vs H under various Pey for
x= 0, 0.1 measured at 4.2 K and for x= 0.2 measured
at 0.6 K in Figs. 2 and 3, respectively. The fact that
H, estimated from the maxima of 3_1\}/1[ decreases with
pressure [as shown in the insets of Figs. 2 and 3] is
in agreement with ddT—PQ’z -2 K kbar™!. Linear fits give
the values 4-= -1.1 T kbar™"' for x= 0, L= -1.0
T kbar™" for x= 0.1, 4= -1.4 T kbar™" for x= 0.2.
The larger volume of Ybg.gYo.2InCus makes it more
sensitive to Pex and cause the increase of |dd}1I;’ .

In conclusion, the Pj, is negative because the volume
of YbInCuy expands with Y-substitution, meanwhile
T, and H, shift to lower temperatures and lower fields,
resulting in the suppression of the transition at x.= 0.3
of Yb1—xYxInCuy4. The effect of Pex on the first-order
valence transition of Yb; _xYxInCus (x < xc) has been
studied by measurement of high-field magnetization

curves under various fixed pressures at LT. The H,
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Fig. 3. The magnetization derivatives of ‘(ii—l\é[ vs H for x= 0.2
under various Pex at 0.6 K. The inset shows pressure depen-
dence of Hy determined from ‘(ii—l\}/ll under various fixed Peyx. HyP
(o) is determined by increasing fields sweep, HI°"™ (o) is de-

termined by decreasing field sweep (see text for details).

decrease with pressure for all the samples with x < %

 dHy -1
as PR 1 T kbar™".
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