

Low temperature properties of Sm-based filled skutterudite phosphides

R. Giri ^a, Y. Shimaya ^a, C. Sekine ^{a,1}, I. Shirotani ^a, K. Matsuhira ^b, Y. Doi ^c, Y. Hinatsu ^c

^aDepartment of Electrical and Electronic Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan

^bDepartment of Electronics, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan

^cGraduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Abstract

Filled skutterudite phosphides $SmFe_4P_{12}$ and $SmOs_4P_{12}$ have been prepared at high temperature and high pressure. Electrical resistivity, magnetic susceptibility and specific heat measurements indicate that $SmOs_4P_{12}$ is an anti-ferromagnet with a T_N of 4.6K, whereas $SmFe_4P_{12}$ is paramagnetic down to 2K.

Key words:

Filled skutterudite; specific heat; magnetic ordering

1. Introduction

Ternary compounds with the general formula MT_4P_{12} (M=alkaline earth, rare earth and actinide; T=Fe, Ru and Os; X=P, As and Sb) crystallize in the filled skutterudite structure. [1]. This MT_4X_{12} skutterudite compounds are attracting a great deal of attention, because they show various physical properties like superconductivity [2], metal-insulator transition [3], magnetic ordering [4], a heavy fermion metal [5].

$PrRu_4P_{12}$ shows an anomalous metal-insulator (MI) transition at 60K [3]. The MI transition is caused by a structural phase transition that doubles the unit cell and the nesting of the Fermi surface. $SmRu_4P_{12}$ also shows MI transition at 16K and behaves metallic above this temperature [6]. In fact, the MI transition occurs in two successive steps and could be due to an orbital ordering and magnetic ordering. The interesting property found in $SmRu_4P_{12}$ motivated us to further study in Sm-based skutterudite phosphides by substituting transition metals. In this paper we report the low temperature properties of $SmFe_4P_{12}$ and $SmOs_4P_{12}$.

2. Experiment

Single phase polycrystalline $SmFe_4P_{12}$ and $SmOs_4P_{12}$ have been synthesized by using high pressure and high temperature method [7]. The samples were characterized by powder X-ray diffraction using $CuK\alpha_1$ radiation and silicon as a standard. Resistivity was measured by using standard four-probe direct current method over a temperature range from 2 to 300K. The DC magnetic susceptibility was measured in the range from 2 to 300K with a Quantum Design MPMS SQUID magnetometer. The specific heat was measured by thermal relaxation method (PPMS, Quantum Design Inc.).

3. Experimental results and discussion

The cubic lattice parameters of $SmFe_4P_{12}$ and $SmFe_4P_{12}$ are determined from x-ray powder diffractometry to be $a=7.7986\text{\AA}$, 8.0752\AA , respectively.

The electrical resistivity versus temperature for $SmFe_4P_{12}$ is plotted in Fig. 1. The resistivity decreases linearly down to 100K and the decreasing rate

¹ Corresponding author. E-mail: Sekine@elec.muroran-it.ac.jp

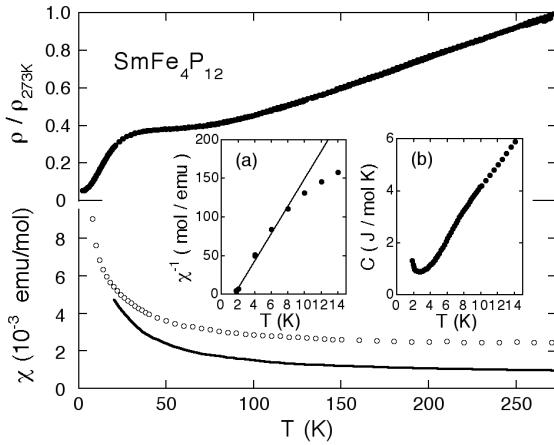


Fig. 1. Normalized electrical resistivity ρ/ρ_{273K} and magnetic susceptibility χ of $SmFe_4P_{12}$ as a function of temperature. Low temperature inverse magnetic susceptibility χ^{-1} and specific heat coefficient are shown in inset (a) and (b), respectively.

of resistivity becomes very small down to 30K followed by a steep decrease. This behavior resembles that of Kondo compounds. The resistivity of $SmOs_4P_{12}$ exhibits a weak T-dependence above 40K and a broad minimum near 40K, followed by a sharp drop at about 5K, which is associated with the onset of magnetic order as shown in Fig. 2. The magnetic susceptibility χ for $SmFe_4P_{12}$ and $SmOs_4P_{12}$ are plotted versus temperature in Fig. 1 and Fig. 2, respectively. In the figures, the solid curves show the theoretical magnetic susceptibility of Van Vleck-Frank Sm^{3+} [8]. The observed susceptibility of $SmFe_4P_{12}$ does not follow the theoretical model. This fact suggests that the Sm ion is in the valence fluctuation state in $SmFe_4P_{12}$. On the other hand, the observed susceptibility of $SmOs_4P_{12}$ is similar to the theoretical model. This fact suggests that Sm ion is nearly trivalent state. A distinct cusp anomaly found in the susceptibility at 4.5K, which indicates antiferromagnetic ordering. The specific heat coefficient of $SmFe_4P_{12}$ shows an upturn, which is still increasing at 2K and the intersection of χ^{-1} is positive at around 2K. These facts indicate a possibility of ferromagnetic ordering at lower temperature (Inset (a) and (b) of Fig. 1). The specific heat coefficient of $SmOs_4P_{12}$ shows a pronounced peak at $T_N = 4.6K$, that correlates well in temperature with the cusp of χ and sharp drop in ρ (Inset (a) and (b) of Fig. 2). The magnetic entropy estimated at zero field reaches $Rln4$ at T_N . This suggests that the crystalline electric field (CEF) ground state in cubic symmetry is a quartet. As magnetic field increases, the anomaly shifts to lower temperature. This also indicates the magnetic phase transition is antiferromagnetic one.

In Summary, we have investigated the low temperature properties of Sm-based filled skutterudite

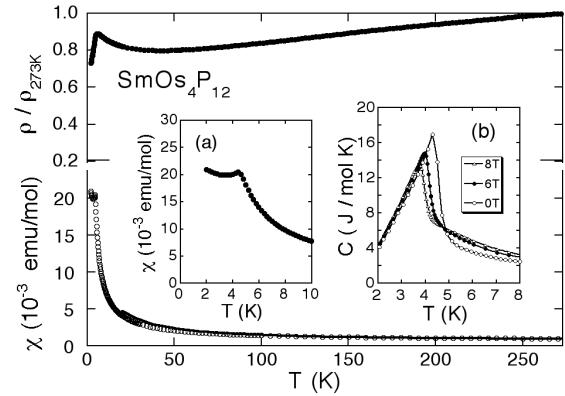


Fig. 2. Normalized electrical resistivity ρ/ρ_{273K} and magnetic susceptibility χ versus temperature for $SmOs_4P_{12}$. Low temperature magnetic susceptibility χ and specific heat coefficient are shown in inset (a) and (b), respectively.

SmT_4P_{12} ($T=Fe, Os$) compounds. We have found that, $SmOs_4P_{12}$ is an antiferromagnet with transition temperature $T_N = 4.6K$, while, no phase transition was found in $SmFe_4P_{12}$.

Acknowledgements

We gratefully acknowledge Dr. H. Kitou and Dr. A. Iyo for their kind support to samples preparation. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- [1] W. Jeitschko and D. Braun: *Acta Crystallogr. Sect. B* **33** (1977) 3401
- [2] I. Shirotani, T. Uchiumi, K. Ohno, C. Sekine Y. Nakajawa, K. Kanoda, S. Todo, and T. Yagi: *Phys. Rev. B* **56** (1997) 7866
- [3] C. Sekine, T. Uchiumi, I. Shirotani and T. Yagi: *Phys. Rev. Lett.* **79** (1997) 3218.
- [4] C. Sekine, T. Uchiumi, I. Shirotani, K. Matsuhira, T. Sakakibara, T. Goto and T. Yagi: *Phys. Rev. B* **62** (2000) 11581
- [5] D. A. Gajewski, N. R. Dilley, E. J. Freeman, R. Chau, M. B. Maple, D. Mandrus, B.C. Sales and A. H. Lacerda: *J. Phys. Condens. Matter* **10** (1998) 6973
- [6] K. Matsuhira, Y. Hinatsu, C. Sekine, T. Tagashi, H. Maki, I. Shirotani, H. Kitazawa, T. Takamatsu, and G. Kido Manuscript for orbital 2001
- [7] I. Shirotani, N. Ichihashi, K. Nozawa, M. Kinoshita, T. Yagi, K. Suzuki, and T. Enoki: *Proc. ICTMC-9, Jpn. J. Appl. Phys.* **32** (1993) Suppl. 32-3, p.695
- [8] M. Kasaya, J.M. Tarascon and J. Etourneau: *Solid State Commun.* **33** (1980) 1005