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Abstract

We review our recent work on molecular magnets, Fe12 and V15 with focusing on the determination of low-lying
quantum energy levels which have permanent importance in understanding their unique quantum magnetism.
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Recent synthesis technique has provided a variety of
molecular magnets with a finite number of interacting
paramagnetic ions. Interest inherent in a finite cluster
is a quantum nature which manifests in well defined
discrete energy levels. Due to the existence of discrete
levels we can expect new quantum phenomena. Of par-
ticular interest is a situation of degeneracy of two mag-
netic levels, which easily comes from the level-crossing
by an application of external field and raises fundamen-
tal problems of quantum dynamics. From this point of
view, it is important to know the structure of energy
levels of the systems.
(1) Magnetization process of Fe12

[Fe(OCH3)2(dbm)]12 (Fe12) where dbm=dibenzoyl-
methane has a ring structure consisting of 12 param-
agnetic Fe3+ (S=5/2) ions. Fig. 1 shows the magneti-
zation M(H) curve at 0.1 K for increasing pulse mag-
netic field H up to 55 T, together with dM/dH. Five
distinct steps were observed with no hysteresis; M(H)
is practically zero up to 10 T and it rapidly increases by
about 2 µB at each step with the field separation of 10
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T, showing plateaus of 2, 4, 6, 8 and 10 µB. The behav-
ior is characteristic of the system with discrete energy
levels of different total spin states |ST=0, 1, 2, ···, 30>,
which is one important aspect of the quantum nature.
With increasing H, each of the Zeeman level-crossings
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Fig. 1. Magnetization M(H) curve at 0.1 K for increasing pulse

magnetic field up to 55 T, together with dM/dH.
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raises the value of quantized magnetic moment in the
ground state by one unit at regular interval, implying
that the energy levels for every ST states are given by
a Landé interval rule. We can determine the energy
gap ∆E/kB=13.6 K between the |ST=0> ground state
and the |ST=1> excited state, directly from the first
transition field 10 T. Using the relation, ∆E = 4J/N
with N=12, intraring interaction J/kB=40.7 K is de-
termined. These values of ∆E/kB and J/kB should be
compared to 10.7 K and 31.9 K from the susceptibility
data [1]. The M(H) measurements at low temperature
is a powerful direct method to determine the energy
levels.

It should be noticed that the dM/dH curve is un-
usual; the second peak is higher and narrower than
others. Besides, we found that the M(H) curve at 1.3
K exhibits unusual features with an anomalous hys-
teresis for increasing and decreasing field; the magne-
tization change at each step occurs at two stages, lead-
ing to a characteristic wingled hysteresis loop with a
plateau region. These anomalous behaviors around the
level-crossing fields during the fast field passage are
discussed elsewhere [2].
(2) ESR of V15

K6[V15As6O42(H2O)]·8H2O (V15) is characterized
by a remarkable layer structure in an each quasispher-
ical cluster, which has an overall trigonal symmetry
with C3 axis. A cluster containing 15 paramagnetic
vanadium ions, V4+ (S=1/2), consists of two hexagons
separated by a triangle.

The temperature dependence of the ESR intensity
I(T ) is plotted in a log-log scale in Fig. 2, together
with our own susceptibility χ(T ) data normalized at
50 K. The straight lines represent the Curie law with
the different effective number Neff of S=1/2 paramag-
netic ions. It is evident that Neff which participates in

0.001

0.01

0.1

1

0.1 1 10 100 1000 10000

χ
ESR, I(T)

χ 
(e

m
u/

m
ol

),
 I

(T
)

Temperature (K)

N
eff

=15

N
eff

=1

N
eff

=3

2χ
hex

χ
tri

Fig. 2. Temperature dependence of the ESR intensity I(T ) in

a log-log scale, together with susceptibility χ(T ) normalized

at 50 K.

the resonance decreases quite distinctly with decreas-
ing temperature. The angular dependencies of g-value
and linewidth also change quite drastically with tem-
perature. A remarkable fact is that the anisotropy axis
of g-value reverses between 300 K and 50 K, after show-
ing the isotropic behavior at 200 K.

All the peculiar behaviors are explained by a sim-
plified model in terms of weakly coupled two subunits.
One is a strongly dimerized hexagon, having the
Shex=0 ground state and an Shex=1 excited state with
the energy gap ∆hex. The other is a weakly coupled
triangle, having two degenerate Kramers doublets
with Stri=1/2 as the ground state and a low-lying
excited Stri=3/2 quartet state with the energy gap
∆tri. We simply assume that the low-energy physics
arises from additive contributions from two subunits.
Indeed, from a geometrical reason, the spin frustra-
tion effectively decouples the triangle spin unit from
the upper and lower hexagonal units. The calculated
total susceptibility χtot based on this model is in a
reasonable agreement with the data as shown by the
solid curve in Fig. 2, in which each contribution from
χtri and 2χhex are also shown. The fiting parameters
∆/kB=3.74 K and J/kB=650 K should be compared
with ∆/kB=3.7K and J/kB=800 K from a more elab-
orate analysis of the susceptibility [3]. In short, V15
has two important energy scales, ∆tri between the
doublet and quartet, ∆hex at which the singlets in the
hexagon break and the molecules starts to behave as
more than three spins.

At this stage, we have to introduce a weak coupling
between two subunits to give rise to the collapsed sin-
gle resonance. If the two subunits were decoupled com-
pletely, we would expect two signals having different
g-values in contradiction to the observation. For the
collapsed signal, I(T ) resembles very much χ(T ) as
observed and the T -dependent g-values are explained
quantitatively by the averaging effect with the appro-
priate weight of two subunits, being proportional to
χtri and χhex. In such a way, we are now able to solve
a puzzle of the anisotropy reversal between high and
low temperatures. Details are discussed elsewhere [4].
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