Effect of Hund coupling on one-dimensional spin-orbital model
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Abstract

The one-dimensional spin-orbital model perturbed by Hund coupling is studied by renormalization group and
bosonization methods. The Hund coupling breaks the SU(4) spin-orbital symmetry into SU(2)pin X U(1)orbital at
weak coupling fixed point. The one-loop renormalization group analysis shows that the Hund coupling is relevant
irrespective of Coulomb repulsion. When Coulomb repulsion is larger than Hund coupling, the spin-orbital physics in
strong coupling regime is described by SO(6) Gross-Neveu model, where the spin and orbital excitations are gapped.
When the Hund coupling is much larger than the Coulomb repulsion, the strong coupling regime is described by the
two coupled SO(3)spin X SO(3)orbital Gross-Neveu model, where again the spin and orbital excitations are gapped.
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1. Introduction

The interplay of spin and orbital degrees of freedom
plays an important role in diverse correlated electron
systems.[1] Recently, the one-dimensional (1D) spin-
orbital models have been studied intensively motivated
by the discovery of the quasi-1D spin-gapped materials,
NayTiaSboO and NazV20s.[2] These materials can be
modeled by a quarter-filled two-band Hubbard model,
[3-6] and in the limit of strong Coulomb repulsion, the
model can be mapped to the following coupled spin-
chain model

H= KZ(JC +Si-Siy1)(y+ Ti- Tigr), (1)

7

where S; and T; are the SU(2) spin and orbital oper-
ators in fundamental representation at site i, respec-
tively. K ~ 8t2/U is a coupling constant, where ¢ is
band-width, and U is Coulomb repulsion. The U(1)
charge excitations are gapped at quarter-filling if the
Hubbard U exceeds a critial value.[7] Therefore, at
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low energy, the non-trivial dynamics of the Hamilto-
nian (1) reside in spin-orbital sector. The Hamiltonian
(1) has an obvious SU(2)spin X SU(2)orbital Symme-
try for generic values of  and y. For (z,y) = (5, 1),
the SU(2)spin X SU(2)orbital Symmetry is enhanced to
SU(4) symmetry. At the SU(4) symmetric point, the
Hamiltonian (1) becomes critical, and it can be de-
scribed by SU(4) level 1 (k=1) Wess-Zumino-Witten
(WZW) model.[4-6] Furthermore, the SU(4) sym-
metric Hamiltonian is integrable by Bethe ansatz
method.[8] The Hamiltonian (1) for generic values of x
and y can be most naturally studied as a perturbation
with respect to the SU(4) symmetric Hamilontian.[4,6]
The notable features of the obtained phase diagram
of (1) are the existence of extended critical region in
the vicinity of the symmetric point (z,y) = (3, 1) and
the existence of the massive phase with an approxi-
mate SO(6) symmetry with a dimerization of spin and
orbital singlets. [4-6]

In this paper, we study the breaking of SU(4)
spin-orbital symmetry by Hund coupling between two
bands[3] at quarter filling. The Hund coupling is ex-
pected to be present in more realistic description of
spin-orbital systems.[3] If the bandwidth ¢ is larger
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than the Hubbard repulsion U and the Hund coupling
J (the weak coupling case), the bosonization and the
perturbative renormalization group (RG) method can
be employed. By expressing Hamiltonian in terms of
charge U(1) and spin-orbital SU(4) currents, the U(1)
charge degrees of freedom are shown to decouple from
the SU(4) spin-orbital degrees of freedom, and the
SU(4) symmetry of spin-orbital degrees of freedom
are shown to be broken into SU(2)spin X U(1)orbital-
The one-loop renormalization group equations (RGE)
which is valid in the weak coupling case can be obtained
using current algebra techniques.[9-14] The analysis
of RGE indicates that the Hund coupling is relevant
irrespective of Coulomb repulsion, and it drives system
to strong coupling regimes. The nature of the strong
coupling regimes crucially depends on the relative
magnitude of the Coulomb repulsion and the Hund
coupling. When the Coulomb repulsion is larger than
the Hund coupling, the RG flows of coupling constants
strongly indicate the restoration of SU(4) ~ SO(6)
symmetry[4,13,15] at the strong coupling regime. It
turns out that the strong coupling regime can be de-
scribed by SO(6) Gross-Neveu (GN) model, where the
spin and orbital excitations are gapped. The detailed
investigations reveal that the SO(6) symmetric strong
coupling regime belongs to the same universality class
of massive phase found by Azaria et al. and Ttoi et al.
apart from some inessential factors.[4,6]

When the Hund coupling is much larger than the
Coulomb repulsion, the full restoration of SO(6) sym-
metry does not occur, but the orbital U(1)orbital Sym-
metry is enhanced to SO(3)orbital. The strong coupling
regime is described by the two coupled SO(3)spin X
SO(3)orbita GN model, where the spin and orbital ex-
citations are also gapped.

Even if the spin and orbital excitations are gapped
in both cases, the properties of spin-spin and orbital-
orbital correlation functions are very different from
each other, which is essentially due to the differences
in the excitation spectrum between SO(6) and SO(3)
GN model.

The studies of gapless charge excitations, the strong
coupling case, and the details of caculations will be
published elsewhere.[16]

2. Model

The Hamiltonian is given by [3]

H=H;+Hy+ Hy,

Hy=Y" (—

iaaloc

aa’ T
tiit1 CinoCitlaso T H-C~) )

U
Hy = 2 ) Z ’ [niaania’a’(l —daarlo0r) |,
Hjy= —ZJZ Si1 - Siz, (2)

where cino is the electron operator with orbital a =
(1,2) and spin o at i-th site. S;q is the spin 1/2 operator
of the a-band at i-th site. The hopping is assumed to
be diagonal in orbital space, tﬁﬁ_l = t0go- t,U, J are
taken to be positive. At this point, define the spin and
orbital operators.

S= Z Cl.la [%]a’a Cao,

aoc’o

T = CL/O. [j]a’a Cao, (3)
2

aa’c

where @, 7 are the Pauli matrices acting on the spin,
orbital space, respectively. H; + Hy possesses U(4) =
U(1)charge X SU(4)spin—orbital symmetry. [3,4,6] The
Hund coupling H; breaks the SU(4)spin—orbital Sym-
metry explicitly.

At low energy, with the free electron spectrum lin-
earized, the lattice electron operators cioo can be re-
placed by the continuum chiral fermions.

In terms of the chiral fermions w(%)w, H; becomes

VR
Hy = — E
A
«,0

where vp = 2tsin kpag. Let us introduce the chiral
U(1) charge and SU(4) spin-orbital currents.

14 ao 0 ao
/dx[q/).lr%ao' %Rx _wzaa ’lgl;x ? (4)

Jr/r= Z Q/JL/R,M?/)L/R,am

oo

JZ‘/R = Z q/)L/R,a’o" [MA]gO’J 7/)L/R,ad7 (5)
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where M#* [A =1,---,15] are the generators of SU(4)
Lie algebra.[6] The convenient explicit realizations of
M* are

1 o%\o! o’ 1 o’ T\ o O \o' (T \«
7% (0. 7 (T Va(F), (5).-©)

where 6%, 7%, (a,b = 1,2, 3) are the Pauli matrices act-
ing on spin and orbital space, respectively. The SU(4)
matrices satisfy the normalization tr(M4M?P) =
1647, We will also designate the generators Eq. (6)
with a pair of indices, (a,b) # (0,0),(a,b = 0,1,2,3)
with an understanding that ¢° = 7° = Idy. For an
example, the first three generators of Eq. (6) can be
alternatively expressed as M(®0).

Using Abelian and non-Abelian bosonizations[9-11],
H; + Hy can be expressed as



H; + Hy = Hyq)

2TVs0
+/dx2[ R (R IE 4 JRIR) - 2Uali IR,
A

1
Huu) = %/dw[z(&cqﬁp)g i KPH,Q,} ¥ Hom, (7)

where vs, = vr(1 — erjfp) and Hym o U? cos[d/T,)].
Hy(yy is the Hamiltonian of charge degrees of freedom.
The charge boson ¢, and its conjugate momentum 11,

are related with U(1) currents through

JR(x) + JL(x) = \/gaxqﬁp(x%

JR(.Z‘)—JL(.T)Z — ;Hp(.r),
v=ve[+ 20 Doy,
K= [0 - 2004 200 < (8)

The scaling dimension of umklapp operator is 4K,.
With large U such that 4K, < 2 charge gap would
open.

In the form of Eq. (7), the charge and spin/orbital de-
grees of freedom are explicitly separated on the Hamil-
tonian level. Employing the completeness relation of
SU(N) Lie algebra,

a a 1 1
ZTlmqu = 5 |:6lq6mp — Nalm(qu 5 (9)

the total action of spin-orbital degrees of freedom be-
comes

Sso = wzw(SU(4)k=17'Uso) (10)

Y / dedry" [Jga@ T 4 g0 JI(;O)} (11)
Py / dodr 3 [ 70991 4 707 |

—& / dadry" [ng) ngo)} (12)
- _?]g/dxdv'z LD a2 (13)
- f}s/dm'z [J,Ea3)J1%a3)}

— g4 / dxdr [J,EO’I)JI%O’I) + J,EO’Q)JI%O’Q)} (14)

s / dodr IV 10V,

where Swow(SU(4)k=1,vs0) is the WZW action for
SU(4)k=1 Kac-Moody algebra with the ”speed of
light” given by vs,. Initial values are given by

M (0) = —A2(0) = Ja, §1(0) =2Ua + 2Ja,
32(0) = 2Ua + Ja, §3(0) = 2Ua — 2Ja,
34(0) = 2Ua — 3Ja, §(0) = 2Ua. (15)

The symmetry of spin sector is clearly seen to be SU(2),
while the symmetry of orbital sector is U(1). Namely
only the rotation about the third axis in orbital space
is a symmetry. The importance of the symmetry break-
ing Hund coupling at low energy can be assessed by RG
flows of Hund coupling. g1 and (g4, gs) describe the in-
teractions in the spin and orbital sector, respectively.
g2 and g3 couple the spin and orbital degrees of free-
dom. If the orbital sector were SU(2) symmetric, then
the equalities g2 = g3 and gs = gs would hold.

Using the current algebra technique[12-14], the
one-loop RGE can be obtained. The one-loop RGE
of current-current type interactions is essentially de-
termined by the structure constants of underlying Lie
algebra [12,13], which is SU(4) in our case. Since A1, A2
terms of Eq. (11) are chiral, they are not renormal-
ized in the leading order of U, J.[14] Thus, at one-loop
level, we need only to consider the renormalizations
of gi’s. Define the dimensionless coupling constants,
gi = =2~ and let t = In L be the RG time, where L

4drvg

is the cut-off length scale. The one-loop RGE are

dg1
E:—gf —295 —gg

% = —2g192 — g295 — 9394

% =—2¢193 — 29204

% = —39293 — 9495

% =-3g5 — gi. (16)

Note that the Eq. (16) are invariant under Z, trans-
formation (g2,g93) — —(g2,93)-

The Eq. (16) are analyzed in the next section using
numerical integration and linear stability analysis.[13]

3. RG flows

Given the initial values of {g;},(i = 1,...,5), the
RG flows of Eq. (16) are uniquely determined. The ini-
tial values of g; are in turn determined by kr, U/t <
1, J/t < 1. In principle, the derived RGE Eq. (16)
is valid until {max ¢;} ~ O(1). If all of coupling con-
stants converge to finite values as t — oo, the initial



fixed point is stable. If any coupling constant diverges,
the initial fixed point is destabilized along the direc-
tion of the diverge coupling constant, and the asymp-
totic behaviour of diverging trajectory can be deter-
mined by RGE.[14] Non-zero Hund couplingJ intro-
duces anisotropy among the initial values of coupling
constants. The anisotropy of initial values changes the
characters of RG flows qualitatively. For our system,
the important parameter which influences the RG flow
is the relative magnitutde of Coulomb repulsion and
Hund coupling. Clearly all coupling constants flow into
the strong coupling regime. Moreover, the coupling
constants seem to converge as they enter the strong
coupling regime.[see Fig. 1] Such a convergence of cou-

Fig. 1. The evolutions of g1, g4, g5, —g2, —g3 as a function of
time for U/t = 0.5, J/t = 0.1.

pling constants cannot be an artifact of one-loop RGE
since the convergence clearly starts in the perturbative
regime, |g;| < 1, where one-loop RGE is reliable. The
RG flows of Fig. 1 clearly demonstrate that the set of
coupling {g;} flow onto fixed ratios, which is unity in
our case, as they approach the strong coupling regime.
The above convergence of coupling constants implies a
restoration of SU(4) symmetry. But we have to keep
in mind the sign reversal of g2, g3, and this point is
discussed in the next section. The symmetry restora-
tion as a system approaches (massive) strong coupling
phase also occurs in the spin-orbital model considered
by Azaria et al.[4] and in the SO(8) theory of two-leg
Hubbard ladder at half-filling.[15] The above conver-
gence of coupling constants can be understood by lin-
ear stability analysis.[13,16]

Now we turn to the case of J > U. Fig. 2 shows the
evolutions of coupling constants for a case of J > U.
Note the signs of g2, g3 are not reversed contrary to the
case of Fig. 1. Again all coupling constants flow into the
strong coupling regime, but some new features emerge.
Clearly, g2 and g3 merge in the perturbative regime, so
do g4 and gs. But the total RG flows do not converge to
the isotropic ray in the perturbative regime. Indeed all
flows tend to merge deep in the asymptotic region af-
ter g1 becomes negative, but then (g2, g3, g4, g5) lie too
far outside the perturbative regime,[see Fig. 5] where
one-loop RGE is not reliable. Thus, we can safely claim

that the RG flows approach the strong coupling regime
with SU(2)spin X SU(2)orbital Symmetry, while a fur-
ther enhancement of symmetry to SU(4) in the asymp-
totic region is questionable. The approach using the
exact beta function indicates that the symmetry is not
enhanced to SU(4) for the case of J > U.[16]
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Fig. 2. The RG evolution of g1, g4, g5, 92,93 as a function of
time for U/t = 0.03,.J/t = 0.5.

4. Discussions and Summary

In discussing the symmetry breaking of SU(4) spin-
orbital symmetry, it is convenient to use alternative
bosonization of SU(4)r=1 Kac-Moody Hamiltonian.
It is well-known[6,9,11] that SU(4)x=1 WZW model
is equivalent to the sum of two decoupled SU(2)x=2
WZW model, where each SU(2)g=2 WZW model rep-
resents the spin and orbital degrees of freedom of our
system. It is also well-known that SU(2)k=2 WZW
model is equivalent to the triplet of massless Majorana
fermions gg,%,gz%.[ls] 5:,%,52% are the Majorana
fermions associated with the spin / orbital SU(2)k=2
WZW model, respectively. The explicit expressions of
SU(2) spin/oribital sub-currents of SU(4) currents in
terms of Majorana fermions are given by [20]
Jg,o)/ﬂ: _% 6abcgb % gs’%7

7
TV NE= =5 (17

The g2, g3 terms which couple the spin and orbital exci-
tations can be expressed in terms of Majorana fermions
as follows: (no summation over a and b)

ng#mb#o) J]Ea¢07b¢0) = (2 RESL) (€ RELL)- (18)

For later conveniences introduce the notations x5, =
€5/t rS5/t,1.- Now let us discuss the implications of RG
flows for two cases U > J and U < J on the basis of
Majorana fermions.

Case of U > J- The sign reversal of g2, gs which
was necessary for the restoration of SU(4) symmetry



in strong coupling regime in case of U > J can be
implemented by £ p — &£ z, which was also nec-

essary for the Hamiltonian considered by Azaria et
al.[4,5] to acquire SO(6) ~ SU(4) symmetry. Thus, the
physics of spin-orbital degrees of freedom in this strong
coupling regime is essentially identical with those of
massive phase described by SO(6) Gross-Neveu (GN)
model[21,22] as discussed by Azaria et al..[4] Azaria et
al. characterized the ground state by the alternating
expectation values of the spin and orbital dimerization
operators:

Ay =(=)"Si Siy1, Ar=(=)"T; Tis1. (19)

In GN model, the chiral symmetry (¢ér,&L) —
(¢r,—€&L) is spontaneously broken, resulting in the
ground states with positive or negative expectation
values (€rEr) = (k). The topological excitations which
connect these two degenerate ground states are called
kinks and anti-kinks. The dimerization operators Eq.
(19) reduce to

Asm Y RE Ai~ YO kL (20)

a=1,2,3 a=1,2,3
Then, the ground state can be characterized by
(As) = —(Ay) = A, (21)

which indicates the alternating spin and oribital sin-
glets.[4]

Next let us consider spin-spin correlation function.
Owing to the SO(6) symmetry orbital-orbital corre-
lation function gives the same result as spin-spin cor-
relation function up to a trivial phase factor. In the
infrared limit the contributions from the lightest ex-
citations dominate the correlation function, which is
fundamental Majorana fermions in the case of SO(6)
GN model.[4,22] [More precisely, the mass of Majorana
fermions is smaller than the twice the kink mass.]

(S(z,7) - S(y,0)) ~ cos(2krz) cos(2kry) Ko(mR)
—e'"*rT B2 K3 (mR), (22)

where R = \/(x — y)2 + v2,72 and Ko(mR) is the real
space propagator of a free massive Majorana fermions.
The first term of Eq. (22) would give rise to the co-
herent magnon peak at k = 2kr and the second term
represents the incoherent part at k ~ 4kp.

Case of J > U- For the case of J > U, in constrat
to the case of J < U, the sign reversals of g» and g3
in strong coupling regime do not occur. The symmetry
in orbital sector is restored from U(1) to SU(2) even
before entering the strong coupling regime as shown in
Fig. 2. An interesting feature in the strong coupling
regime is a hierarchy of coupling constants:

(Igal ~1gs]) > (Ig2] ~ lgsl) > |gl- (23)

Then the effective Hamiltonian in the strong coupling
regime consists of two coupled SO(3) GN models, one
in the spin sector and the other in orbital sector. Ex-
plicitly, [g2 = g3 and g4 = g5 are imposed]

Us
H=—i%
'

[ggRaxggR - f:LaxﬁgL} -5 (Z Ke)?
—iS Y [etn0utin - §L0u0 | - 9a(Y i)
—92) KD R, (24)

Since |g4| (remember g4 is negative) is much larger than
other coupling constants, the orbital part [ the second
line of Eq. (24) ] can be essentially treated separately in
the leading approximation. Now for the (orbital) SO(3)
GN model, the spontaneous breaking of chiral symme-
try exists, leading to the finite expectation value of (or-
bital) dimerization operator () r{) = A # 0. Thus,
the dimerization in orbital sector is expected. However,
SO(3) GN model does not possess elementary (Majo-
rana) fermions in the excitation spectrum.[22,23] Only
kinks and anti-kink remain in the spectrum. Following
the discussions on the spin-spin correlation function in
the previous section, we expect that the coherent 2kr
peak would be absentin the orbital-orbital correlation
function. This is because the kink excitations can not
be built from the finite number of elemenatry (Majo-
rana) fermions. Recall that the kinks change the sign
of (3, kt) = A+.[22] The mean-field result suggests
that[21] the gap of the orbital excitation is the order
of Ay o e “t/194] Thus the expectation value of or-
bital dimerization operator becomes very large in the
strong coupling regime. Once the very large condensate
(>, k&) = A in orbital sector is formed, the orbital
sector can be safely integrated out, leaving us with [Re-
call go < 0]

H=—i% 3 [€n0utin — €20:€0 | — (D k0’
— 920> kDA, (25)

which is the sum of three massive Majorana fermions
with weak marginal coupling gi. The Hamiltonian Eq.
(25) describes the spin sectorin strong coupling regime.
The mass of spin excitations is given by mspin = |g2|A¢.
The weak coupling g; only slightly renormalizes the
fermion mass mspin, and it can be safely ignored. There-
fore, the spin sector at low energy is described by the
triplet of free massive Majorana fermions or equiva-
lently (off-critical) Ising models. In terms of the spin
variables S, this implies the massive S=1 excitations
being consistent with the Haldane conjecture.[12] The
expectation values of spin dimerization operators from



Eq.(25) is given by (3~ k%) ~ |g2|A¢ # Ay, which ob-
viously violates SO(6) symmetry. Next, we expect that
the coherent magnon peak would exists at k = 2kp
for the spin-spin correlatin function in constrast to the
case of orbital-orbital correlation function. This is be-
cause the Majorana fermions are the only excitations
in the spin sector. But the peak is supposed to appear
at w = Mepin, which is very large due to very large A;.
Thus, 2kr component of spin-spin correlation function
has a negligible effect to the low energy physics. The
boundary between U > J and U < J is studied in [16].

Jt gapped

S=1 AF spin chain

Gapped

-+S0(3)_spin free Majora‘k‘ g
x SO(3)_orbital GN

Gapped
SO(6) GN

gapless 1 Uit
SO(6) WZW

Fig. 3. The phase diagram based on the properties spin-orbital
degrees of freedom only. The symmetry and the effective model
at the strong coupling regime is indicated. Every boundary
represents smooth crossover rather than critical quantum phase
transitions.

Summary- We have studied the 1D spin-orbital
model perturbed by Hund coupling J. Hund coupling
turns out to be relevant irrespective of short range
Coulomb repulsion U, which drives the system to
strong coupling regime. When the Coulomb repulsion
is larger than the Hund coupling, the spin-orbital
degrees of freedom in the strong coupling regime are
described by SO(6) GN model. When the Hund cou-
pling is larger than the Coulomb repulsion the spin-
orbital system is described by two coupled SO(3) GN
model with a hierarchy among coupling constants for
weak coupling case. It turns out that the spin sector
can be reduced to the theory of a sum of three free
massive Majorana fermions, while the orbital sector
is essentially equivalent to SO(3) GN model. The ex-
act RG approach indicates that the two cases U > J
and J > U are smoothly connected to each other
via crossover. The above results are summarized as a
phase diagram in (U, J) plane in Fig. 3.
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