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Abstract

The one-dimensional spin-orbital model perturbed by Hund coupling is studied by renormalization group and
bosonization methods. The Hund coupling breaks the SU(4) spin-orbital symmetry into SU(2)spin ×U(1)orbital at
weak coupling fixed point. The one-loop renormalization group analysis shows that the Hund coupling is relevant
irrespective of Coulomb repulsion. When Coulomb repulsion is larger than Hund coupling, the spin-orbital physics in
strong coupling regime is described by SO(6) Gross-Neveu model, where the spin and orbital excitations are gapped.
When the Hund coupling is much larger than the Coulomb repulsion, the strong coupling regime is described by the
two coupled SO(3)spin ×SO(3)orbital Gross-Neveu model, where again the spin and orbital excitations are gapped.
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1. Introduction

The interplay of spin and orbital degrees of freedom
plays an important role in diverse correlated electron
systems.[1] Recently, the one-dimensional (1D) spin-
orbital models have been studied intensively motivated
by the discovery of the quasi-1D spin-gapped materials,
Na2Ti2Sb2O and Na2V2O5.[2] These materials can be
modeled by a quarter-filled two-band Hubbard model,
[3–6] and in the limit of strong Coulomb repulsion, the
model can be mapped to the following coupled spin-
chain model

H = K
∑

i

(x + Si · Si+1)(y + Ti · Ti+1), (1)

where Si and Ti are the SU(2) spin and orbital oper-
ators in fundamental representation at site i, respec-
tively. K ∼ 8t2/U is a coupling constant, where t is
band-width, and U is Coulomb repulsion. The U(1)
charge excitations are gapped at quarter-filling if the
Hubbard U exceeds a critial value.[7] Therefore, at
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low energy, the non-trivial dynamics of the Hamilto-
nian (1) reside in spin-orbital sector. The Hamiltonian
(1) has an obvious SU(2)spin × SU(2)orbital symme-
try for generic values of x and y. For (x, y) = (1

4
, 1

4
),

the SU(2)spin × SU(2)orbital symmetry is enhanced to
SU(4) symmetry. At the SU(4) symmetric point, the
Hamiltonian (1) becomes critical, and it can be de-
scribed by SU(4) level 1 (k=1) Wess-Zumino-Witten
(WZW) model.[4–6] Furthermore, the SU(4) sym-
metric Hamiltonian is integrable by Bethe ansatz
method.[8] The Hamiltonian (1) for generic values of x
and y can be most naturally studied as a perturbation
with respect to the SU(4) symmetric Hamilontian.[4,6]
The notable features of the obtained phase diagram
of (1) are the existence of extended critical region in
the vicinity of the symmetric point (x, y) = ( 1

4
, 1

4
) and

the existence of the massive phase with an approxi-
mate SO(6) symmetry with a dimerization of spin and
orbital singlets. [4–6]

In this paper, we study the breaking of SU(4)
spin-orbital symmetry by Hund coupling between two
bands[3] at quarter filling. The Hund coupling is ex-
pected to be present in more realistic description of
spin-orbital systems.[3] If the bandwidth t is larger
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than the Hubbard repulsion U and the Hund coupling
J (the weak coupling case), the bosonization and the
perturbative renormalization group (RG) method can
be employed. By expressing Hamiltonian in terms of
charge U(1) and spin-orbital SU(4) currents, the U(1)
charge degrees of freedom are shown to decouple from
the SU(4) spin-orbital degrees of freedom, and the
SU(4) symmetry of spin-orbital degrees of freedom
are shown to be broken into SU(2)spin × U(1)orbital.
The one-loop renormalization group equations (RGE)
which is valid in the weak coupling case can be obtained
using current algebra techniques.[9–14] The analysis
of RGE indicates that the Hund coupling is relevant
irrespective of Coulomb repulsion, and it drives system
to strong coupling regimes. The nature of the strong
coupling regimes crucially depends on the relative
magnitude of the Coulomb repulsion and the Hund
coupling. When the Coulomb repulsion is larger than
the Hund coupling, the RG flows of coupling constants
strongly indicate the restoration of SU(4) ∼ SO(6)
symmetry[4,13,15] at the strong coupling regime. It
turns out that the strong coupling regime can be de-
scribed by SO(6) Gross-Neveu (GN) model, where the
spin and orbital excitations are gapped. The detailed
investigations reveal that the SO(6) symmetric strong
coupling regime belongs to the same universality class
of massive phase found by Azaria et al. and Itoi et al.
apart from some inessential factors.[4,6]

When the Hund coupling is much larger than the
Coulomb repulsion, the full restoration of SO(6) sym-
metry does not occur, but the orbital U(1)orbital sym-
metry is enhanced to SO(3)orbital . The strong coupling
regime is described by the two coupled SO(3)spin ×
SO(3)orbital GN model, where the spin and orbital ex-
citations are also gapped.

Even if the spin and orbital excitations are gapped
in both cases, the properties of spin-spin and orbital-
orbital correlation functions are very different from
each other, which is essentially due to the differences
in the excitation spectrum between SO(6) and SO(3)
GN model.

The studies of gapless charge excitations, the strong
coupling case, and the details of caculations will be
published elsewhere.[16]

2. Model

The Hamiltonian is given by [3]

H =Ht +HU +HJ ,

Ht =
∑

iαα′σ

(
− tαα′

i,i+1 c
†
iασci+1α′σ + H.c.

)
,

HU =
U

2

∑
iαα′σσ′

[
niασniα′σ′(1 − δαα′δσσ′)

]
,

HJ = −2J
∑

i

Si1 · Si2, (2)

where ciασ is the electron operator with orbital α =
(1, 2) and spin σ at i-th site. Siα is the spin 1/2 operator
of the α-band at i-th site. The hopping is assumed to
be diagonal in orbital space, tαα′

i,i+1 = tδαα′ . t,U, J are
taken to be positive. At this point, define the spin and
orbital operators.

S =
∑
ασ′σ

c†σ′α [
−→σ
2

]σ′σ cασ,

T =
∑
αα′σ

c†α′σ [
−→τ
2

]α′α cασ, (3)

where −→σ ,−→τ are the Pauli matrices acting on the spin,
orbital space, respectively. Ht +HU possesses U(4) =
U(1)charge × SU(4)spin−orbital symmetry. [3,4,6] The
Hund coupling HJ breaks the SU(4)spin−orbital sym-
metry explicitly.

At low energy, with the free electron spectrum lin-
earized, the lattice electron operators ciασ can be re-
placed by the continuum chiral fermions.

In terms of the chiral fermions ψ( R
L

)ασ, Ht becomes

Ht =
vF

i

∑
α,σ

∫
dx

[
ψ†

Rασ

∂ψRασ

∂x
− ψ†

Lασ

∂ψLασ

∂x

]
, (4)

where vF = 2t sin kFa0. Let us introduce the chiral
U(1) charge and SU(4) spin-orbital currents.

JL/R =
∑
ασ

ψ†
L/R,ασψL/R,ασ ,

JA
L/R =

∑
α′σ′ασ

ψ†
L/R,α′σ′ [MA]α

′σ′
ασ ψL/R,ασ , (5)

where MA [A = 1, · · · , 15] are the generators of SU(4)
Lie algebra.[6] The convenient explicit realizations of
MA are

1√
2

(σa

2

)σ′

σ
δα′

α ,
1√
2
δσ′

σ

(τa

2

)α′

α
,
√

2
(σa

2

)σ′

σ

(τ b

2

)α′

α
, (6)

where σa, τ b, (a, b = 1, 2, 3) are the Pauli matrices act-
ing on spin and orbital space, respectively. The SU(4)
matrices satisfy the normalization tr(MAMB) =
1
2
δAB . We will also designate the generators Eq. (6)

with a pair of indices, (a, b) �= (0, 0), (a, b = 0, 1, 2, 3)
with an understanding that σ0 = τ0 = Id2. For an
example, the first three generators of Eq. (6) can be
alternatively expressed as M(a,0).

Using Abelian and non-Abelian bosonizations[9–11],
Ht +HU can be expressed as
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Ht +HU = HU(1)

+

∫
dx

∑
A

[
2πvso

5
(JA

L J
A
L + JA

RJ
A
R ) − 2UaJA

L J
A
R

]
,

HU(1) =
vρ

2

∫
dx

[
1

Kρ
(∂xφρ)

2 +KρΠ
2
ρ

]
+Hum, (7)

where vso = vF (1 − Ua
2πvF

) and Hum ∝ U2 cos[4
√
πφρ].

HU(1) is the Hamiltonian of charge degrees of freedom.
The charge boson φρ and its conjugate momentum Πρ

are related with U(1) currents through

JR(x) + JL(x) =

√
4

π
∂xφρ(x),

JR(x) − JL(x) = −
√

4

π
Πρ(x),

vρ = vF

[
(1 +

2Ua

πvF
)(1 − Ua

πvF
)
]1/2

> vF ,

Kρ =
[
(1 − Ua

πvF
)/(1 +

2Ua

πvF
)
]1/2

< 1. (8)

The scaling dimension of umklapp operator is 4Kρ.
With large U such that 4Kρ < 2 charge gap would
open.

In the form of Eq. (7), the charge and spin/orbital de-
grees of freedom are explicitly separated on the Hamil-
tonian level. Employing the completeness relation of
SU(N) Lie algebra,

∑
a

Ta
lmT

a
pq =

1

2

[
δlqδmp − 1

N
δlmδpq

]
, (9)

the total action of spin-orbital degrees of freedom be-
comes

Sso = Swzw(SU(4)k=1, vso) (10)

− λ1

∫
dxdτ

∑
a

[
J

(a0)
L J

(a0)
L + J

(a0)
R J

(a0)
R

]
(11)

− λ2

∫
dxdτ

∑
a

[
J

(a3)
L J

(a3)
L + J

(a3)
R J

(a3)
R

]

− g̃1

∫
dxdτ

∑
a

[
J

(a0)
L J

(a0)
R

]
(12)

− g̃2

∫
dxdτ

∑
a

[
J

(a,1)
L J

(a,1)
R + J

(a,2)
L J

(a,2)
R

]
(13)

− g̃3

∫
dxτ

∑
a

[
J

(a3)
L J

(a3)
R

]

− g̃4

∫
dxdτ

[
J

(0,1)
L J

(0,1)
R + J

(0,2)
L J

(0,2)
R

]
(14)

− g̃5

∫
dxdτ

[
J

(0,3)
L J

(0,3)
R

]
,

where Swzw(SU(4)k=1, vso) is the WZW action for
SU(4)k=1 Kac-Moody algebra with the ”speed of
light” given by vso. Initial values are given by

λ1(0) = −λ2(0) = Ja, g̃1(0) = 2Ua + 2Ja,

g̃2(0) = 2Ua + Ja, g̃3(0) = 2Ua − 2Ja,

g̃4(0) = 2Ua − 3Ja, g̃5(0) = 2Ua. (15)

The symmetry of spin sector is clearly seen to be SU(2),
while the symmetry of orbital sector is U(1). Namely
only the rotation about the third axis in orbital space
is a symmetry. The importance of the symmetry break-
ing Hund coupling at low energy can be assessed by RG
flows of Hund coupling. g̃1 and (g̃4, g̃5) describe the in-
teractions in the spin and orbital sector, respectively.
g̃2 and g̃3 couple the spin and orbital degrees of free-
dom. If the orbital sector were SU(2) symmetric, then
the equalities g̃2 = g̃3 and g̃4 = g̃5 would hold.

Using the current algebra technique[12–14], the
one-loop RGE can be obtained. The one-loop RGE
of current-current type interactions is essentially de-
termined by the structure constants of underlying Lie
algebra [12,13], which is SU(4) in our case. Since λ1, λ2

terms of Eq. (11) are chiral, they are not renormal-
ized in the leading order of U, J .[14] Thus, at one-loop
level, we need only to consider the renormalizations
of g̃i’s. Define the dimensionless coupling constants,
gi = g̃i

4πvso
, and let t = lnL be the RG time, where L

is the cut-off length scale. The one-loop RGE are

dg1
dt

= −g2
1 − 2g22 − g23

dg2
dt

= −2g1g2 − g2g5 − g3g4

dg3
dt

= −2g1g3 − 2g2g4

dg4
dt

= −3g2g3 − g4g5

dg5
dt

= −3g22 − g24 . (16)

Note that the Eq. (16) are invariant under Z2 trans-
formation (g2, g3) → −(g2, g3).

The Eq. (16) are analyzed in the next section using
numerical integration and linear stability analysis.[13]

3. RG flows

Given the initial values of {gi}, (i = 1, . . . , 5), the
RG flows of Eq. (16) are uniquely determined. The ini-
tial values of gi are in turn determined by kF , U/t <
1, J/t < 1. In principle, the derived RGE Eq. (16)
is valid until {max gi} ∼ O(1). If all of coupling con-
stants converge to finite values as t → ∞, the initial
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fixed point is stable. If any coupling constant diverges,
the initial fixed point is destabilized along the direc-
tion of the diverge coupling constant, and the asymp-
totic behaviour of diverging trajectory can be deter-
mined by RGE.[14] Non-zero Hund couplingJ intro-
duces anisotropy among the initial values of coupling
constants. The anisotropy of initial values changes the
characters of RG flows qualitatively. For our system,
the important parameter which influences the RG flow
is the relative magnitutde of Coulomb repulsion and
Hund coupling. Clearly all coupling constants flow into
the strong coupling regime. Moreover, the coupling
constants seem to converge as they enter the strong
coupling regime.[see Fig. 1] Such a convergence of cou-

20 40 60 80 100

-0.2

-0.1

0.1

g_1

g_5

g_4

−g_2

−g_3

Fig. 1. The evolutions of g1, g4, g5,−g2,−g3 as a function of

time for U/t = 0.5, J/t = 0.1.

pling constants cannot be an artifact of one-loop RGE
since the convergence clearly starts in the perturbative
regime, |gi| < 1, where one-loop RGE is reliable. The
RG flows of Fig. 1 clearly demonstrate that the set of
coupling {gi} flow onto fixed ratios, which is unity in
our case, as they approach the strong coupling regime.
The above convergence of coupling constants implies a
restoration of SU(4) symmetry. But we have to keep
in mind the sign reversal of g2, g3, and this point is
discussed in the next section. The symmetry restora-
tion as a system approaches (massive) strong coupling
phase also occurs in the spin-orbital model considered
by Azaria et al.[4] and in the SO(8) theory of two-leg
Hubbard ladder at half-filling.[15] The above conver-
gence of coupling constants can be understood by lin-
ear stability analysis.[13,16]

Now we turn to the case of J � U . Fig. 2 shows the
evolutions of coupling constants for a case of J � U .
Note the signs of g2, g3 are not reversed contrary to the
case of Fig. 1. Again all coupling constants flow into the
strong coupling regime, but some new features emerge.
Clearly, g2 and g3 merge in the perturbative regime, so
do g4 and g5. But the total RG flows do not converge to
the isotropic ray in the perturbative regime. Indeed all
flows tend to merge deep in the asymptotic region af-
ter g1 becomes negative, but then (g2, g3, g4, g5) lie too
far outside the perturbative regime,[see Fig. 5] where
one-loop RGE is not reliable. Thus, we can safely claim

that the RG flows approach the strong coupling regime
with SU(2)spin × SU(2)orbital symmetry, while a fur-
ther enhancement of symmetry to SU(4) in the asymp-
totic region is questionable. The approach using the
exact beta function indicates that the symmetry is not
enhanced to SU(4) for the case of J � U .[16]

2 4 6 8 10 12

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

t

g_1
g_2

g_3

g_4 g_5

Fig. 2. The RG evolution of g1, g4, g5, g2, g3 as a function of

time for U/t = 0.03,J/t = 0.5.

4. Discussions and Summary

In discussing the symmetry breaking of SU(4) spin-
orbital symmetry, it is convenient to use alternative
bosonization of SU(4)k=1 Kac-Moody Hamiltonian.
It is well-known[6,9,11] that SU(4)k=1 WZW model
is equivalent to the sum of two decoupled SU(2)k=2

WZW model, where each SU(2)k=2 WZW model rep-
resents the spin and orbital degrees of freedom of our
system. It is also well-known that SU(2)k=2 WZW
model is equivalent to the triplet of massless Majorana
fermions ξa

s, R
L

, ξa
t, R

L

.[18] ξa
s, R

L

, ξa
t, R

L

are the Majorana

fermions associated with the spin / orbital SU(2)k=2

WZW model, respectively. The explicit expressions of
SU(2) spin/oribital sub-currents of SU(4) currents in
terms of Majorana fermions are given by [20]

J
(a,0)
R
L

/
√

2 = − i

2
εabc ξb

s, R
L
ξc

s, R
L
,

J
(0,a)
R
L

/
√

2 = − i

2
εabc ξb

t, R
L
ξc

t, R
L
. (17)

The g2, g3 terms which couple the spin and orbital exci-
tations can be expressed in terms of Majorana fermions
as follows: (no summation over a and b)

J
(a�=0,b�=0)
R J

(a�=0,b�=0)
L = (ξa

s,Rξ
a
s,L) (ξb

t,Rξ
b
t,L). (18)

For later conveniences introduce the notations κa
s/t ≡

ξa
s/t,Rξ

a
s/t,L. Now let us discuss the implications of RG

flows for two cases U > J and U 	 J on the basis of
Majorana fermions.

Case of U > J - The sign reversal of g2, g3 which
was necessary for the restoration of SU(4) symmetry
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in strong coupling regime in case of U > J can be
implemented by ξa

t, R
L

→ ±ξa
t, R

L

, which was also nec-

essary for the Hamiltonian considered by Azaria et
al.[4,5] to acquire SO(6) ∼ SU(4) symmetry. Thus, the
physics of spin-orbital degrees of freedom in this strong
coupling regime is essentially identical with those of
massive phase described by SO(6) Gross-Neveu (GN)
model[21,22] as discussed by Azaria et al..[4] Azaria et
al. characterized the ground state by the alternating
expectation values of the spin and orbital dimerization
operators:

∆s = (−)i Si · Si+1, ∆t = (−)i Ti ·Ti+1. (19)

In GN model, the chiral symmetry (ξR, ξL) →
(ξR,−ξL) is spontaneously broken, resulting in the
ground states with positive or negative expectation
values 〈ξRξL〉 = 〈κ〉. The topological excitations which
connect these two degenerate ground states are called
kinks and anti-kinks. The dimerization operators Eq.
(19) reduce to

∆s ∼
∑

a=1,2,3

κa
s , ∆t ∼

∑
a=1,2,3

κa
t . (20)

Then, the ground state can be characterized by

〈∆s〉 = −〈∆t〉 = ±∆0, (21)

which indicates the alternating spin and oribital sin-
glets.[4]

Next let us consider spin-spin correlation function.
Owing to the SO(6) symmetry orbital-orbital corre-
lation function gives the same result as spin-spin cor-
relation function up to a trivial phase factor. In the
infrared limit the contributions from the lightest ex-
citations dominate the correlation function, which is
fundamental Majorana fermions in the case of SO(6)
GN model.[4,22] [More precisely, the mass of Majorana
fermions is smaller than the twice the kink mass.]

〈S(x, τ) · S(y, 0)〉 ∼ cos(2kF x) cos(2kF y)K0(mR)

−e4ikF x B2K2
0 (mR), (22)

where R =
√

(x− y)2 + v2
soτ2 and K0(mR) is the real

space propagator of a free massive Majorana fermions.
The first term of Eq. (22) would give rise to the co-
herent magnon peak at k = 2kF and the second term
represents the incoherent part at k ∼ 4kF .

Case of J � U - For the case of J � U , in constrat
to the case of J < U , the sign reversals of g2 and g3
in strong coupling regime do not occur. The symmetry
in orbital sector is restored from U(1) to SU(2) even
before entering the strong coupling regime as shown in
Fig. 2. An interesting feature in the strong coupling
regime is a hierarchy of coupling constants:(
|g4| ∼ |g5|

)
�

(
|g2| ∼ |g3|

)
� |g1|. (23)

Then the effective Hamiltonian in the strong coupling
regime consists of two coupled SO(3) GN models, one
in the spin sector and the other in orbital sector. Ex-
plicitly, [g2 = g3 and g4 = g5 are imposed]

H = −i us

2

∑
a

[
ξa

sR∂xξ
a
sR − ξa

sL∂xξ
a
sL

]
− g1(

∑
a

κa
s)2

− i
ut

2

∑
a

[
ξa

tR∂xξ
a
tR − ξa

tL∂xξ
a
tL

]
− g4(

∑
a

κa
t )2

− g2(
∑

a

κa
s)(

∑
a

κa
t ). (24)

Since |g4| (remember g4 is negative) is much larger than
other coupling constants, the orbital part [ the second
line of Eq. (24) ] can be essentially treated separately in
the leading approximation. Now for the (orbital) SO(3)
GN model, the spontaneous breaking of chiral symme-
try exists, leading to the finite expectation value of (or-
bital) dimerization operator 〈∑

a
κa

t 〉 = ∆t �= 0. Thus,
the dimerization in orbital sector is expected. However,
SO(3) GN model does not possess elementary (Majo-
rana) fermions in the excitation spectrum.[22,23] Only
kinks and anti-kink remain in the spectrum. Following
the discussions on the spin-spin correlation function in
the previous section, we expect that the coherent 2kF

peak would be absent in the orbital-orbital correlation
function. This is because the kink excitations can not
be built from the finite number of elemenatry (Majo-
rana) fermions. Recall that the kinks change the sign
of 〈∑

a
κa

t 〉 = ∆t.[22] The mean-field result suggests
that[21] the gap of the orbital excitation is the order
of ∆t ∝ e−ut/|g4 |. Thus the expectation value of or-
bital dimerization operator becomes very large in the
strong coupling regime. Once the very large condensate
〈∑

a
κa

t 〉 = ∆t in orbital sector is formed, the orbital
sector can be safely integrated out, leaving us with [Re-
call g2 < 0]

H = −i us

2

∑
a

[
ξa

sR∂xξ
a
sR − ξa

sL∂xξ
a
sL

]
− g1(

∑
a

κa
s)2

− g2(
∑

a

κa
s)∆t, (25)

which is the sum of three massive Majorana fermions
with weak marginal coupling g1. The Hamiltonian Eq.
(25) describes the spin sector in strong coupling regime.
The mass of spin excitations is given bymspin = |g2|∆t.
The weak coupling g1 only slightly renormalizes the
fermion massmspin, and it can be safely ignored. There-
fore, the spin sector at low energy is described by the
triplet of free massive Majorana fermions or equiva-
lently (off-critical) Ising models. In terms of the spin
variables S, this implies the massive S=1 excitations
being consistent with the Haldane conjecture.[12] The
expectation values of spin dimerization operators from
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Eq.(25) is given by 〈∑
a
κa

s〉 ∼ |g2|∆t �= ∆t, which ob-
viously violates SO(6) symmetry. Next, we expect that
the coherent magnon peak would exists at k = 2kF

for the spin-spin correlatin function in constrast to the
case of orbital-orbital correlation function. This is be-
cause the Majorana fermions are the only excitations
in the spin sector. But the peak is supposed to appear
at ω = mspin, which is very large due to very large ∆t.
Thus, 2kF component of spin-spin correlation function
has a negligible effect to the low energy physics. The
boundary between U > J and U 	 J is studied in [16].

1

1

J/t

U/t

Gapped

gapped
S=1 AF spin chain

gapless

SO(6) GN

Gapped

SO(3)_spin free Majorana
x SO(3)_orbital GN

SO(6) WZW

Fig. 3. The phase diagram based on the properties spin-orbital

degrees of freedom only. The symmetry and the effective model

at the strong coupling regime is indicated. Every boundary

represents smooth crossover rather than critical quantum phase

transitions.

Summary- We have studied the 1D spin-orbital
model perturbed by Hund coupling J . Hund coupling
turns out to be relevant irrespective of short range
Coulomb repulsion U , which drives the system to
strong coupling regime. When the Coulomb repulsion
is larger than the Hund coupling, the spin-orbital
degrees of freedom in the strong coupling regime are
described by SO(6) GN model. When the Hund cou-
pling is larger than the Coulomb repulsion the spin-
orbital system is described by two coupled SO(3) GN
model with a hierarchy among coupling constants for
weak coupling case. It turns out that the spin sector
can be reduced to the theory of a sum of three free
massive Majorana fermions, while the orbital sector
is essentially equivalent to SO(3) GN model. The ex-
act RG approach indicates that the two cases U > J
and J > U are smoothly connected to each other
via crossover. The above results are summarized as a
phase diagram in (U, J) plane in Fig. 3.
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