

Anomalous metallic phase and magnetism in a high-mobility and strongly correlated 2D electron system

Mitsuaki Ooya ^a, Tohru Okamoto ^{a,1}

^a*Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan*

Abstract

We report the transport properties of a low disorder two-dimensional electron system in the Si/SiGe heterostructure, where the strong e - e interaction causes the anomalous metallic temperature dependence of resistivity. The metallic behavior was observed even in a high magnetic field where spin degree of freedom is frozen.

Key words: two-dimensional electron system; magnetoresistance; metal-insulator transition

1. Introduction

It is well accepted that the Coulomb interaction is essential to the two-dimensional metal-insulator transition (MIT) [1,2]. The spins of electrons are expected to play important roles in such strongly correlated systems. A magnetic field applied parallel to the two-dimensional (2D) plane acts on the spins of electrons. Silicon inversion layers are ideal systems for studying on the spin effect using the parallel magnetic field [3,4] since the spin-orbit interaction is very small in the conduction band of silicon [5,6]. It was found that the parallel magnetic field suppresses the metallic behavior in Si-MOSFET's [7–9]. However, whether spin degree of freedom is essential for the metal-insulator transition is not clear yet. In the present work, we investigate the magnetoresistance in a very high-mobility silicon 2D electron system.

2. Samples and Measurements

A Si/SiGe heterostructure sample was grown by combining gas-source MBE and solid-source MBE. De-

tails of the growth and characterization have been reported elsewhere [10,11]. The thickness of the strained silicon channel layer is 20 nm. It is sandwiched between relaxed Si_{0.8}Ge_{0.2} layers and separated from a Sb- δ -doped layer by a 20 nm spacer. The electron density N_s can be controlled by varying the substrate bias voltage. It has a high mobility of $\mu = 66 \text{ m}^2/\text{V s}$ at zero substrate bias voltage ($N_s = 2.2 \times 10^{15} \text{ m}^{-2}$) and $T = 0.36 \text{ K}$. We could not measure the critical electron density N_c of the MIT due to large contact resistance in a low- N_s region. It was mounted on a rotatory thermal stage in a pumped ³He refrigerator together with a GaAs Hall generator and resistance thermometers calibrated in magnetic fields.

3. Results

3.1. $B = 0$ metallic transport

Fig. 1 shows metallic transport at $B = 0$. Fermi temperature is given by $T_F = 2\pi\hbar^2 N_s / k_B m^* g_v g_s$, where $m^* = 0.19m_e$ is the effective mass and $g_v = 2$ is the valley degeneracy factor in silicon inversion layers. The spin degeneracy factor is $g_s = 2$ for $B = 0$ and $g_s = 1$ for a high magnetic field region where the spin polarization is completed.

¹ Corresponding author. E-mail: okamoto@phys.s.u-tokyo.ac.jp

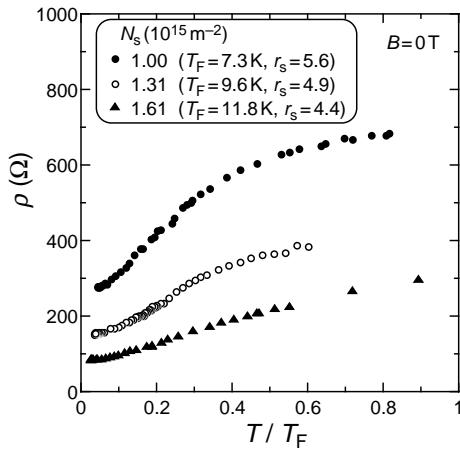


Fig. 1. Metallic temperature dependence of resistivity at $B = 0$. r_s represents the strength of the e - e interaction [9].

Das Sarma and Hwang calculated the metallic T -dependence of resistivity ρ in Si-MOSFET's based on the assumption that almost electrons are frozen due to impurities in the vicinity of the critical density N_c of the MIT and the density of free electrons responsible for the metallic transport is given by $N_s - N_c$ [12]. On the other hand, overall behavior shown in Fig. 1 is similar to that observed in Si-MOSFET's [1] while resistivities are much lower than the critical value ($\rho_c \sim 2h/e^2$) for the MIT. The result suggests that the distinct metallic T -dependence of ρ appears even for $N_s \gg N_c$.

3.2. In a parallel magnetic field

Magnetoresistance in a parallel magnetic field $B_{||}$ for a low enough temperature ($T \ll T_F$) is shown in the inset to Fig. 2. The kink indicated by the arrow is associated with the critical magnetic field B_c for the spin polarization. As shown in Fig. 2, a sharp drop in ρ with decreasing temperature is observed even in the spin polarized state, while the metallic temperature dependence of ρ disappears for $B_{||} > B_c$ in Si-MOSFET's [9]. The present result indicates that the metallic transport can appear even in the state where the spin degree of freedom is limited.

The strong $B_{||}$ -dependence of ρ due to the spin polarization was calculated by Dolgopolov and Gold [13], and Herbut [14]. They considered the screening effect on impurity potential in Si-MOSFET's and well reproduced the experimental $\rho(B_{||})$ curve in Ref. [9]. The screening effect also explains the metallic T -dependence of ρ . A steep change in ρ should occur in the crossover regime of $T \sim T_F$ [12]. On the other hand, we found a sharp drop in ρ in rather low temperatures of $T/T_F < 0.2$ at $B_{||} = 9$ T.

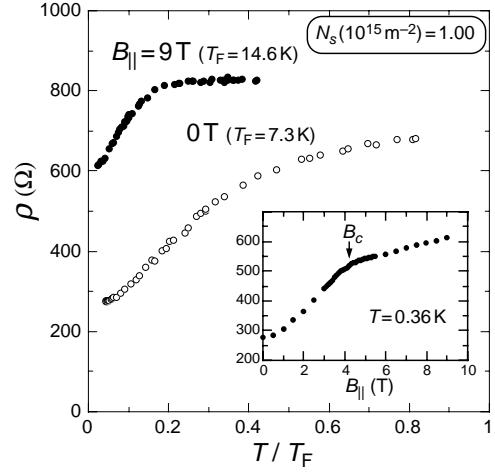


Fig. 2. ρ vs T/T_F data at $N_s = 1.00 \times 10^{15} \text{ m}^{-2}$ for different magnetic states. The inset shows the $B_{||}$ -dependence of ρ at $T = 0.36$ K.

Acknowledgements

We wish to thank Dr. A. Yutani and Prof. Y. Shiraki for providing us with Si/SiGe samples. This work is supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

References

- [1] E. Abrahams, S. V. Kravchenko, M. P. Sarachik, Rev. Mod. Phys. **73** (2001) 251, and references therein.
- [2] S. J. Papadakis, M. Shayegan, Phys. Rev. B **57** (1998) 15068.
- [3] T. Okamoto, S. Kawaji, J. Phys. Soc. Jpn. **65** (1996) 3716.
- [4] T. Okamoto, S. Kawaji, Phys. Rev. B **57** (1998) 9097.
- [5] H. Kodera, J. Phys. Soc. Jpn. Suppl. **21** (1966) 578.
- [6] P. Pfeffer, W. Zawadzki, Phys. Rev. B **59** (1999) 5312.
- [7] D. Simonian *et al.*, Phys. Rev. Lett. **79** (1997) 2304.
- [8] V. M. Pudalov *et al.*, Pis'ma Zh. Èksp. Teor. Fiz. **65**, (1997) 887 [JETP Lett. **65** (1997) 932].
- [9] T. Okamoto *et al.*, Phys. Rev. Lett. **82** (1999) 3875.
- [10] A. Yutani, Y. Shiraki, Semicond. Sci. Technol. **11** (1996) 1009.
- [11] A. Yutani, Y. Shiraki, J. Crys. Growth **175/176** (1997) 504.
- [12] S. Das Sarma, E. H. Hwang, Phys. Rev. Lett. **83** (1999) 164.
- [13] V. T. Dolgopolov, A. Gold, JETP Lett. **71** (2000) 27.
- [14] I. F. Herbut, Phys. Rev. B, **63** (2001) 113102.