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Abstract

A new spin S = 1 antiferromagnet on the kagomé lattice, {Cus(titmb)2(OCOCH3)6}-H20 {titmb=1,3,5-
tris(imidazol-1-ylmethyl)-2,4,6 trimethylbenzene} has been grown and we measured the heat capacity at low tem-
peratures by a relaxation method. We have found two-peak structure in the temperature dependence of the heat

capacity. The higher temperature peak is explained as due to a short-range magnetic ordering in two-dimension.

The lower temperature peak suggests the presence of an energy gap in this S :% kagomé antiferromagnet.
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Spin systems with strong geometrical frustration ex-
hibit interesting low energy properties. The two dimen-
sional Kagomé Heisenberg antiferromagnet (KHA) is
an example of such systems. For an S:% KHA, the-
ories predict that the ground state is in a disordered
quantum spin liquid with a small spin gap to the ex-
cited statescitel,2. The spin gap estimated to be of the
order of 1/20 of the exchange interaction constant|2].
The ground state of an SZ% KHA may be described
by a quantum dimmer mode|[3].

In this paper, we report the results of heat ca-
pacity measurements made on a new S:% KHA,
{Cus(titmb)2(OCOCH3)6}-H20 in which Cu®* has
S = 1. The anisotropy in the g-tensor of copper (II)
ion is small[4] so that Heisenberg model can be applied
to the exchange interaction among the moments.

The compound {Cus(titmb)2(OCOCH3)6}-H20
has the hexagonal structure with the lattice parame-
ters, a=15.539Aand ¢=21.149A[4]. The crystal struc-
ture consists of Cu-CH3COO infinite two dimensional
Kagomé network which extends in the ab plane. These
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layers are well separated from each other by large
titmb molecules and so the exchange interaction be-
tween the layers is expected to be much smaller than
that within an ab layer.

Polycrystalline samples of { Cus (titmb)2(OCOCH3)6 }
-H20 were prepared by spontaneous assembly from
the titmb ligand and copper (II) acetate in methanol
solution. Details are described in ref. [4]. The ma-
terial, titmb= 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-
trimethylbenzene, was purchased from the Wako Pure
Chemical Industries, Ltd. Heat capacity was mea-
sured by a relaxation method using a Quantum Design
PPMS microcalorimeter in the temperature range
between 0.4K and 20K. A sample of about 5mg in
weight was attached to the sample platform with a
small amount of Apiezon N grease.

Figure 1 shows the measured heat capacity, C, in-
cluding the contribution of the lattice, as a function
of temperature for the designated magnetic fields (H).
The heat capacity of {Cus(titmb)2(OCOCH3)6}-H20
exhibited no sharp peaks down to 0.4K, which evi-
dences the absence of long-range magnetic order in
this temperature region. In zero field C' deceases with
decreasing temperature and shows an upturn below 1
K. With the application of external magnetic field a
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Fig. 1. The temperature dependence of the total heat capacity
of {Cus(titmb)2(OCOCH3)6}-H20 in zero and applied mag-
netic fields. The inset shows the low temperature part.
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Fig. 2. The temperature dependence of the magnetic part of the
heat capacity in {Cug(titmb)s(OCOCH3)6}-H20O after sub-
tracting the lattice heat capacity. The solid curves denote the
corresponding theoretical results.

peak appears whose position moves to high tempera-
ture side with increasing H. Also the peak width be-
comes broader as H is increased. In order to get the
magnetic part of the heat capacity, Cy,, we have sub-
tracted the lattice heat capacity, C;, from C. Here,
we assumed that the C) varies with temperature, T,
as C; = BT with 8=0.0149 and was independent of
magnetic fields. We show in Fig. 2 the temperature de-
pendence of magnetic heat capacity of this compound,
after subtracting the lattice heat capacity, for the des-
ignated magnetic fields. We see a broad peak at about
13 K in addition to the low temperature peak already
seen in the raw data. The former broad maximum re-
flects the entropy change associated with a short range
antiferromagnetic ordering in low dimension[5]. On the
other hand, the appearance of a peak in C,, at the low
temperature suggests the presence of an energy gap.
We have analyzed the temperature and magnetic
field dependence of C), based on a simple energy level
scheme, namely, a singlet ground state and first excited
triplet with a spin gap, A. The result of the analysis is
shown with the solid lines in Fig. 2. We were able to
reproduce the experiment rather nicely with A/kg =
0.37 K and g=2.20. The g value obtained in this study

is consistent with that reported before[4]. Theory pre-
dicts that there are many S, = 0 states between the
singlet ground state and the lowest excited triplet[2].
The introduction of these states to the analysis will im-
prove the agreement between theory and experiment.
By comparing the position of the high temperature
peak in C,, with the results of the numerical calcula-
tions[6,7], we have the value J/kp ~ 19 K for the near-
est neighbor exchange interaction. From the numerical
calculation[2] the lower bound is set to A = J/20 for
the spin gap. In the present case, this gives A/kp ~ 1
K, which is larger than that obtained experimentally
(A/kp = 0.37 K).

In conclusion, we have observed two peak fea-
ture in the heat capacity of a new S = % KHA
{CU.3 (titmb)g(OCOCHg)e}-HgO. The higher tem-
perature peak is explained as due to a short range
magnetic ordering in two dimension. The observation
of the lower temperature peak gives evidence for the
presence of a spin gap in this S = % Kagomé lattice
antiferromagnet.
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