
Electronic transport in a 3-D network of 1-D Bi and Te-doped Bi
quantum wires

M. J. Graf a,1, T. E. Huber b

aDepartment of Physics, Boston College, Chestnut Hill, MA 02467 USA
bLaser Laboratory, Howard University, Washington, D.C. 20059 USA

Abstract

The resistance (R) and transverse magnetoresistance (TMR) of a high density network of 6 nm diameter wires of
Bi and Bi doped with 0.138 % Te in porous Vycor glass were measured. For pure Bi R increases as T decreases
from 300 K to 0.3 K. Below 4 K, where R varies approximately as ln(1/T), the order-of-magnitude of the resistance
rise and the behavior of the MR are consistent with localization and electron-electron interaction theories of a
one-dimensional disordered conductor in the presence of strong spin-orbit scattering. Addition of Te, an electron
donor, reduces the amount by which the resistivity increases with decreasing temperature, and the magnitude of
the magnetoresistance is substantially enhanced.
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1. Introduction

The semimetal bismuth has been extensively stud-
ied for quantum confinement effects due to the very
small effective masses and long mean-free-paths of the
charge carriers. In addition to thin films and single
wires[1], recent studies have also looked at the trans-
port properties of large scale networks[2] and arrays
of nanowires[3][4]. Because they combine reduced di-
mensionality with bulk fabrication technology, the lat-
ter materials have additional interest due to their pos-
sible application as efficient thermoelectric materials.
Recently it was shown[2] that a high density three-
dimensional network of 6nm diameter Bi wires in a host
template of porous Vycor glass (Bi-PVG) exhibits low
dimensional electronic transport behavior. Resistance
is a monotonically increasing with decreasing tempera-
ture, and a sharp upturn at low temperatures is consis-
tent with combined electron interaction in a disordered
conductor and weak localization effects. Because lo-
calization is strongly affected by magnetic fields, mag-
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netoresistance is a useful measurement to distinguish
these two competing effects. The small (2 % at 3T)
positive magnetoresistance (MR) observed for Bi-PVG
provided evidence that in fact we observe antilocaliza-
tion, as expected in the presence of strong spin-orbit
coupling. The MR data yielded phase-breaking (lφ) and
spin-orbit scattering (lso) lengths of 80 nm and 30 nm,
respectively.

2. Results

In this work we present new data for the tempera-
ture dependent resistivity and transverse magnetore-
sistance of Bi, doped with 0.14 at. % Te, into porous
Vycor glass (BiTe-PVG). Te is an electron donor, so
we expect the effects to be two-fold, modifying both
the carrier density and the scattering. The sample was
made via the same pressure-injection of molten ma-
terial into the Vycor host as described in our earlier
work[2]. The room temperature resistivity of the BiTe-
PVG composite (50 mΩ-cm) is comparable to that for

Preprint submitted to LT23 Proceedings 20 June 2002



Bi-PVG (20 mΩ-cm), but the fairly large geometric
uncertainties make a precise quantitative comparison
impossible. BiTe-PVG and Bi-PVG have a monoton-
ically increasing resistance with decreasing tempera-
ture, and exhibit a sharp upturn below 5 K. The up-
turn is ascribed to a competition between antilocaliza-
tion (positive dρ/dT) and interaction effects (negative
dρ/dT). In Fig. 1, the low-temperature (0.3 K ≤ T ≤
10 K) fractional change of the temperature-dependent
resistivity (relative to the resistivity at 10 K) is plot-
ted versus the natural logarithm of temperature. The
relative upturn is much weaker for the BiTe-PVG than
for Bi-PVG, and does not vary logarithmically with T.
The weaker upturn indicates that antilocalization ef-
fects play a larger role than interaction effects for the
Te-doped sample as compared to the pure Bi sample.
Since dρ/dT remains negative, interaction effects are
still dominant for BiTe-PVG.
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Fig. 1. The fractional change in resistivity, relative to the

resistivity at 10 K versus temperature for Bi (squares) and Bi

doped with 0.14 at. % Te (circles).

In Fig. 2 we show the fractional change in resistance
relative to the zero-field resistance (transverse mag-
netoresistance, or TMR), at 1.8 K for the BiTe-PVG
composite. Note that while the macroscopic current
flows perpendicular to the applied field, the wires in
the network have random orientation. The data are
well-described by the standard expression for low di-
mensional systems with strong spin-orbit coupling[5],
and by fitting the TMR for the BiTe-PVG composite
we extract values for lφ and lso of 61 nm and 23 nm,
respectively. These are comparable to the values for
Bi-PVG (80 nm and 30 nm). However, we see that the
magnitude of the BiTe-PVG TMR is more than a fac-
tor of 6 larger than for Bi-PVG. TMR measurements
taken at 0.5 K yield a slightly larger lφ of 64 nm, and
the magnitude of the TMR at 3 Tesla is increased from
12 % to 14 %.

The large positive TMR for BiTe-PVG supports our
conjecture from the previous paragraph: Te-doping en-
hances the role of antilocalization relative to Coulomb
interaction effects. Since electron-electron scattering is
believed to be the dominant inelastic process at low
temperatures, it is tempting to ascribe the change to
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Fig. 2. The fractional change in resistivity, relative to zero

magnetic field, versus magnetic field Bi doped with 0.14 at. %

Te at 1.8 K. The solid line is a fit to the theoretical expression

for quasi-1D wires with strong spin-orbit coupling[5]

a change in carrier concentration. One should be cau-
tious in interpreting the data, however. In recent stud-
ies of Bi and Bi - 0.1 at. % Te nanowire arrays[4], it
was shown that while unannealed Bi-Te arrays exhib-
ited low-temperature metallic behavior, with positive
dρ/dT, annealing restored a negative dρ/dT. This was
speculated to result from removal of Te from the Bi
during annealing. While our samples are not annealed,
this effect may be present in our samples to a certain
degree if our cooling rates are considerably slower than
those for the samples studied in Ref. 4. Also, because
the TMR down to 2 K of the nanowire arrays studied
in Ref. 3 was independent of temperature, it was in-
terpreted as being determined by classical effects. Our
TMR data at 0.5 K and 1.8 K show only a modest dif-
ference, and so may contain both quantum and clas-
sical contributions. Nonetheless, the large differences
in the magnitude of the TMR and low-temperature,
temperature-dependent resistivity for our samples lead
us to believe that Te is actually in the Bi nanowire net-
work, and the systematic changes are consistent with
quantum effects.
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