

Anomalous Hall effect in heavy fermion compounds Ce_2MIn_8 ($M=$ Rh or Ir)

Isao Sakamoto^{a,1}, Yoshinobu Shomi^a, Shigeo Ohara^a

^aDepartment of Electrical and Computer Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

Abstract

We have grown single crystals of heavy fermion Ce_2MIn_8 compounds and measured the magnetic susceptibility χ and Hall effect for these compounds in the temperature T range 2–300 K. We found that the anomalous Hall coefficients R_S of these compounds are described as $R_S \propto \chi$ at high temperatures, $R_S \propto \chi\rho$ at T nearly equal to the Kondo temperature and $R_S \propto \rho^2$ at lowest temperature region. Such behavior of R_S agrees with an universal temperature dependence of R_S for heavy fermion materials.

Key words: heavy fermion; Ce_2RhIn_8 ; Ce_2IrIn_8 ; Hall effect

Recently a new heavy fermion superconducting compounds $CeMIn_5$ ($M=$ Co, Rh, Ir) has been discovered[1–3]. These materials crystallize in the quasi-two-dimensional tetragonal $HoCoGa_5$ structure and are built of alternating stacks of layers for $CeIn_3$ and MIn_2 . A bilayer variants, Ce_2MIn_8 , where 2 layers of $CeIn_3$ units are replaced for monolayer of $CeIn_3$ in $CeMIn_5$, are expected to becomes a superconductor under ambient or high pressures. Until now, however, Ce_2RhIn_8 and Ce_2IrIn_8 are known as antiferromagnetic and paramagnetic heavy fermion materials, respectively[4–6].

To investigate a quasi-two-dimensionality in the electrical band structure of R_2MIn_8 compounds, we have measured the de Haas-van Alphen effect on La_2RhIn_8 and reported in [7]. In this paper we have measured the Hall effect and magnetic susceptibility of heavy fermion compounds Ce_2MIn_8 to elucidate electron scattering nature by Ce ions in these compounds

Single crystals of R_2MIn_8 were grown from an In flux starting from the initial compositions of $R:M:In=2:1:10$ by a similar method described in [7]. The crystal structure and phase purity were confirmed by an X-ray powder diffraction method. The obtained lattice parame-

ters for both compounds agree with [5,6]. Measurement of Hall coefficient and electrical resistivity were made by a usual DC method. A SQUID magnetometer was used for magnetic susceptibility measurement.

Figure 1 shows the temperature T dependence of the Hall coefficient R_H for Ce_2MIn_8 ($M=$ Rh, Ir) measured with magnetic field parallel to the c -axis. This figure contains the insets of the resistivity ρ and susceptibility χ vs T . From the temperature dependence of ρ we can confirm that Ce_2RhIn_8 and Ce_2IrIn_8 are heavy fermion materials with the Kondo temperatures of several tens of kelvins and nearly a hundred kelvin, respectively. The coherent state develops at $T_m \sim 5$ K for Ce_2RhIn_8 and $T_m \sim 50$ K for Ce_2IrIn_8 . The susceptibility is found to be well described by the Curie-Weiss law for both field directions at $T \geq 150$ K with the effective Bohr magneton value of 2.54 for Ce^{3+} ion. At $T \leq 100$ K, the susceptibility deviate downward from the Curie-Weiss law owing to the Kondo effect. The χ curve of Ce_2RhIn_8 shows a kink at about 3 K. this temperature corresponds to the Néel temperature.

For a paramagnetic material, the Hall coefficient is given by

$$R_H = R_0 + 4\pi\chi R_S \quad (1)$$

where R_0 and R_S are is the normal and anomalous

¹ Corresponding author. E-mail: sakamoto@elcom.nitech.ac.jp

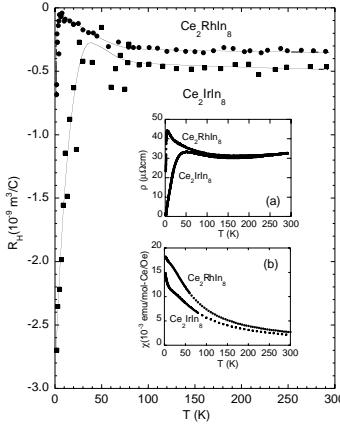


Fig. 1. The temperature T dependence of the Hall coefficient R_H for Ce_2RhIn_8 and Ce_2IrIn_8 measured with fields parallel to the c -axis. The insets shows the resistivity ρ and the susceptibility χ as a function of T .

Hall coefficients, respectively. To see χ dependence of R_H we plot R_H as a function of χ in figure 2(a). From this figure we can see that the data of R_H for ≥ 100 K are well described by equation (1) and we obtained the values of $R_0 = -0.36 \times 10^{-9} \text{ m}^3/\text{C}$ and $R_S = 0.47 \times 10^{-9} \text{ m}^3/\text{C}$.

Figure 2(a), however, shows that the R_H values are enhanced and deviate from the prediction of equation (1) at large χ values. We attribute this deviation to the Kondo effect. According to the theory of the Hall effect[8] for a heavy fermion material, the anomalous Hall coefficient arises from resonant skew scattering by Ce ions and is given by, for $T \geq T_m$ region,

$$R_H = R_0 + \gamma \tilde{\chi} \rho_{mag} \quad (2)$$

where $\tilde{\chi}$ is the susceptibility divided by the Curie constant, ρ_{mag} the resistivity due to magnetic scattering and γ a constant. Now we plot the data for $T_m \leq T \leq 100$ K as a function of $\tilde{\chi} \rho_{mag}$ in figure 2(b) for Ce_2IrIn_8 . To get the value of ρ_{mag} we subtracted a phonon part of ρ for La_2RhIn_8 from ρ of Ce_2RhIn_8 . Figure 2(b) shows that R_H is well described by equation (2), suggesting that the enhancement of R_H from equation (1) is due to the Kondo effect.

The high temperature data of R_H for Ce_2IrIn_8 are found to fit well to equation (1), as shown in figure 2(a). We obtain the values of $R_0 = -0.49 \times 10^{-9} \text{ m}^3/\text{C}$ and $R_S = 0.53 \times 10^{-9} \text{ m}^3/\text{C}$. We note that the R_0 and R_S values of Ce_2RhIn_8 and Ce_2IrIn_8 are nearly same. This indicate that band structures for both compounds are very similar and electron scattering by Ce magnetic ion take places by the same extent. Since the scattering of data for Ce_2IrIn_8 at about 50 K is somewhat large, we can not compare the R_H data with the theoretical prediction for Kondo effect. But at the lowest temperature region R_H is represented by $R_H \propto \rho^2$. This de-

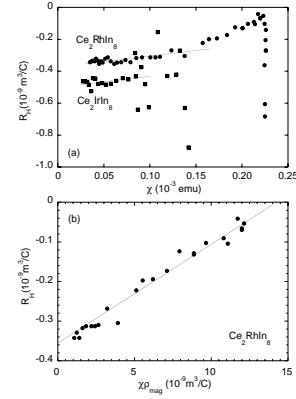


Fig. 2. The Hall coefficient R_H as a function of susceptibility χ (a) and as a function of $\tilde{\chi} \rho_{mag}$ (b) for Ce_2RhIn_8 and Ce_2IrIn_8 . Here $\tilde{\chi}$ is the normalized susceptibility and ρ_{mag} the resistivity due to magnetic scattering.

pendence agree with the theoretical prediction of R_H for $T \leq T_m$ [9].

In summary, we have measured the Hall coefficient for heavy fermion compounds Ce_2RhIn_8 and Ce_2IrIn_8 and found that the gross features of R_H are well explained by an universal temperature dependence of R_H for heavy fermion materials.

We thank A. Baba and K. Yokoi their helpful assistants throughout the present work. One of us (S. O.) was financially supported by Nitto Foundation.

References

- [1] H. Hegger, C. Petrovic, E. G. Moshopoulou, M. F. Hundley, J. L. Sarrao, Z. Fiasco, J. D. Thompson, Phys. Rev. Lett. **84** (2000)4986.
- [2] C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D. Thompson, Z. Fisk, P. Monthoux, J. Phys.: Condens. Matter. **13**(2001)L337.
- [3] C. Petrovic, R. Movshovich, M. Jaime, P. G. Pagliuso, M. F. Hundley, J. L. Sarrao, Z. Fisk, J. D. Thompson, Europhys. Lett. **53** (2001)354.
- [4] N. O. Moreno, M. F. Hundley, P. G. Pagliuso, R. Movshovich, M. Nicklas, J. D. Thompson, J. L. Sarrao, Z. Fisk, Physica B **312&313** (2002)241.
- [5] A. L. Cornelius, P. G. Pagliuso, M. F. Hundley, J. L. Sarrao, Phys. Rev. B **64**(2001)144411.
- [6] J. D. Thompson, R. Movshovich, Z. Fisk, F. Bouquet, N. J. Curro, R. A. Fisher, P. C. Hammel, H. Hegger, M. F. Hundley, M. Jaime, P. G. Pagliuso, C. Petrovic, N. E. Phillips, J. L. Sarrao, J. Magn. Magn. mater. **226-230** (2001)5.
- [7] S. Ohara, Y. Shomi, I. Sakamoto, J. Phys. Soc. Jpn. **71**Suppl. (2002)258.
- [8] A. Hert, P. M. Levy, Phys. Rev. B **36** (1987)1907
- [9] H. Kontani, K. Yamada, J. Phys. Soc. Jpn. **63**(1994)2627.