

Magnetic and Fermi Surface Properties of UTGa₅ (T : Fe, Co and Pt)

Shugo Ikeda^{a,b,1}, Yoshifumi Tokiwa^{a,b}, Tomoyuki Ōkubo^a, Mineko Yamada^a,
Tatsuma D. Matsuda^b, Yoshihiko Inada^a, Rikio Settai^a, Etsuji Yamamoto^b,
Yoshinori Haga^b, Yoshichika Ōnuki^{a,b}

^aGraduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

^bAdvanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan

Abstract

@We succeeded in growing high-quality single crystals of UTGa₅ (T : Fe, Co and Pt) by the self-flux method, and measured the de Haas-van Alphen (dHvA) effect. With increasing the number of 3d-electrons, from Fe to Pt, the Fermi surface is found to change systematically, indicating cylindrical Fermi surfaces in UFeGa₅ and UPtGa₅.

Key words: dHvA; Fermi surface; UPtGa₅; UFeGa₅; UCoGa₅

1. Introduction

UTGa₅ (T : transition metal) has the HoCoGa₅-type tetragonal crystal structure (P4/mmm #123D_{4h}¹)[1]. Uniaxially distorted AuCu₃-type layers of UGa₃ and TGa₂ are stacked sequentially along the [001] direction(*c*-axis). The corresponding Brillouin zone becomes flat along [001], reflecting a large *c*-value. This characteristic feature brings about the quasi-two dimensional Fermi surface. In fact, we found recently cylindrical Fermi surface in a paramagnet UFeGa₅ and antiferromagnets UNiGa₅ and UPtGa₅[2-4].

Namely, the Fermi surface in UFeGa₅ is found to consist of a cylindrical but highly corrugated Fermi surface and a lattice-like Fermi surface. On the other hand, UCoGa₅ is a semimetal with small electron and hole Fermi surfaces[5]. If one more 3d-valence electron is added to UCoGa₅, a cylindrical Fermi surface is expected to appear in UNiGa₅ and UPtGa₅, which is realized in both compounds[2-5].

In the recent de Haas-van Alphen (dHvA) experiment for UPtGa₅, detected dHvA branches were not well identified, although the magnetic structure is simple, doubled with respect to the chemical unit cell along [001][6]. we have thus continued in doing the dHvA experiment to clarify the Fermi surface in UPtGa₅.

2. Experimental Results and Discussion

Fig. 1 shows the angular dependence of the dHvA frequency F ($=\hbar c S_F / 2\pi e$), which is proportional to the extremal (maximum or minimum) cross-sectional area of the Fermi surface S_F . Four kinds of dHvA branches named ε , α_3 , $\alpha_1(\alpha_2)$ and γ were detected. Broken lines in Fig. 1 show the $1/\cos\theta$ -dependence, which is expected for cylindrical Fermi surfaces.

In the previous paper, another branches named β and σ were adopted[4]. They are found to be due to second harmonic and sum of two fundamental branches, and then omitted in Fig. 1. For branch γ , we observed the dHvA signal up to $\theta=75^\circ$, where θ is a tilted field angle from [001] to [100] or [110]. This Fermi surface is thus found to be cylindrical.

From these dHvA results, we propose the Fermi sur-

¹ Corresponding author. Present address: Advanced Science Research Center room 317, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan E-mail: ikeda@popx.tokai.jaeri.go.jp

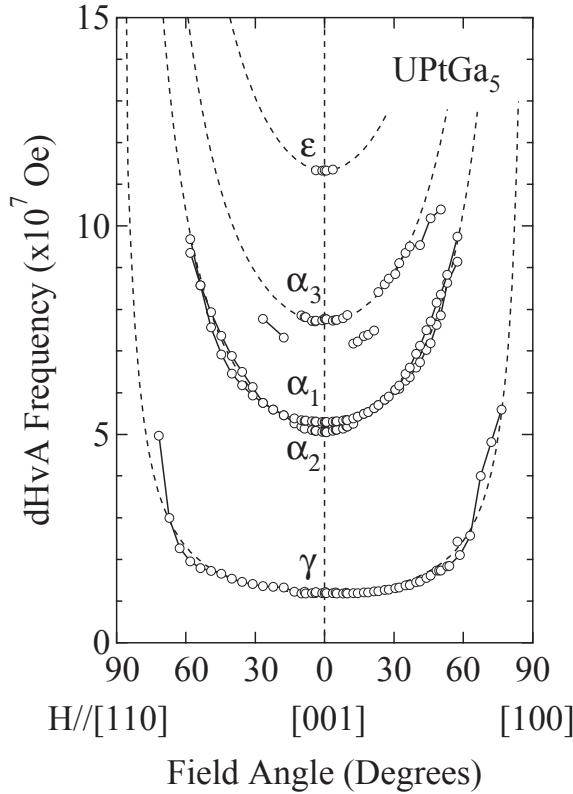


Fig. 1. Angular dependence of the dHvA frequency in UPtGa₅.

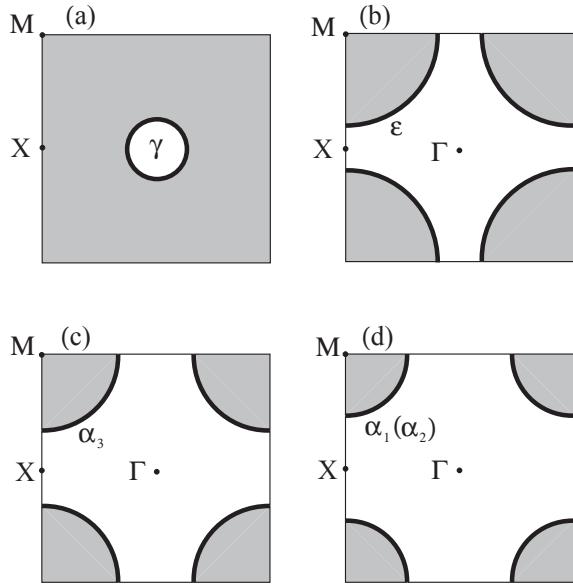


Fig. 2. Cross-sections in the TXM plane for each branch in UPtGa₅.

face for each branch, as shown in Fig. 2. From the magnetic unit cell, it is clear that this compound is a compensated metal with equal volumes of electron and hole Fermi surfaces[6]. We simply assumed that Fermi surfaces of all the branches are cylindrical. The volume of each Fermi surface is as follows : $V_{\gamma} = 0.054V_{BZ}$, $V_{\epsilon} = 0.512V_{BZ}$, $V_{\alpha_3} = 0.354V_{BZ}$ and $V_{\alpha_1(\alpha_2)} = 0.235V_{BZ}$, where V_{BZ} is the volume of the Brillouin zone based on the magnetic unit cell. The total volume for electrons, which are shown by gray areas in Fig. 2, is $2.05V_{BZ}$, indicating the compensated metal. Here branches α_1 and α_2 correspond to the maximum and minimum cross-sectional areas of a cylindrical Fermi surface with convex and concave, respectively. Moreover, the electronic specific heat coefficient $\gamma = 57 \text{ mJ/K}^2\cdot\text{mol}$ is consistent with $\gamma = 61 \text{ mJ/K}^2\cdot\text{mol}$ obtained from the cyclotron mass, where the cyclotron mass ($m_c^* = 10 m_0$) for branch γ corresponds to $\gamma_{\gamma} = 9.3 \text{ mJ/K}^2\cdot\text{mol}$, similarly $\gamma_{\epsilon} = 18.6 \text{ mJ/K}^2\cdot\text{mol}$ for branch ϵ ($m_c^* = 20 m_0$), $\gamma_{\alpha_3} = 22.3 \text{ mJ/K}^2\cdot\text{mol}$ for branch α_3 ($m_c^* = 24 m_0$) and $\gamma_{\alpha_1(\alpha_2)} = 10.7 \text{ mJ/K}^2\cdot\text{mol}$ for branch $\alpha_1(\alpha_2)$ ($m_c^* = 13(10) m_0$).

It is thus concluded that UPtGa₅ is a compensated metal and the Fermi surface consists of four kinds of cylindrical Fermi surfaces.

Acknowledgements

We are grateful to helpful discussion with Prof. H. Yamagami on the theoretical Fermi surface in UPtGa₅. The present work was financially supported by a Grant-in-Aid for Scientific Research COE(10CE2004) from the Ministry of Education, Culture, Sports, Science and Technology.

References

- [1] Yu. N. Grin, P. Pogl and K. Hiebl: *J. Less-Common Met.* **121** (1986) 497.
- [2] Y. Tokiwa, Y. Haga, E. Yamamoto, D. Aoki, N. Watanabe, R. Settai, T. Inoue, K. Kindo, H. Harima and Y. Onuki: *J. Phys. Soc. Jpn.* **70** (2001) 1744-1750
- [3] Y. Tokiwa, T. Maehira, S. Ikeda, Y. Haga, E. Yamamoto, A. Nakamura, Y. Onuki, M. Higuchi, and A. Hasegawa: *J. Phys. Soc. Jpn.* **70** (2001) 2982-2988
- [4] Y. Tokiwa, S. Ikeda, Y. Haga, T. Okubo, T. Iizuka, K. Sugiyama, A. Nakamura and Y. Onuki: *J. Phys. Soc. Jpn.* **71** (2002) 845-851
- [5] S. Ikeda, Y. Tokiwa, T. Okubo, Y. Haga, E. Yamamoto, Y. Inada, R. Settai and Y. Onuki, submitted in *J. Nucl. Sci. Tech.*
- [6] Y. Tokiwa, Y. Haga, N. Metoki, Y. Ishii and Y. Onuki : *J. Phys. Soc. Jpn.* **71** (2002) 725-728