

NMR study of orbital ordering in RTiO_3 (R = Y, Gd, and La)

Takashi Kiyama ^{a,1}, Shin-ichiro Fujisawa ^b, Hajime Saitoh ^b, Masayuki Itoh ^a,
Katsuaki Kodama ^c, and Masashi Takigawa ^c,

^aDepartment of Physics, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan

^bGraduate School of Science and Technology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

^cInstitute for Solid State Physics, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

Abstract

Recently, the orbital degree of freedom has attracted renewed interest in strongly correlated electron systems. The RTiO_3 (R: rare earths) system is one of the attracting systems in the study of the orbital degree of freedom. While an orbital ordering state is observed in a ferromagnet YTiO_3 , no orbital ordering has yet been observed in an antiferromagnet LaTiO_3 . In this study, we have measured $^{47,49}\text{Ti}$ NMR spectra of RTiO_3 (R = Y, Gd, and La). We investigate the orbital state by analyzing the NMR spectra of RTiO_3 .

Key words: RTiO_3 ; orbital ordering; NMR

In addition to the charge and spin degrees of freedom, the orbital degree of freedom plays an important role in the physical properties of the transition-metal oxides. In spite of the importance of the orbital degree of freedom, experimental techniques to observe the orbital states have been limited so far.

In this paper, we report the results of NMR measurement of RTiO_3 (R = Y, Gd, and La). The NMR technique is expected to be powerful to investigate the orbital states. We focus on ferromagnetic YTiO_3 (Curie temperature $T_C = 30$ K), GdTiO_3 ($T_C = 34$ K), and antiferromagnetic LaTiO_3 (Néel temperature $T_N = 150$ K). RTiO_3 has an orthorhombically distorted perovskite structure (space group: P_{bnm}), in which the electronic configuration of Ti^{3+} ions is t_{2g}^1 . Many experimental and theoretical studies suggested that the degeneracy of t_{2g}^1 configuration in YTiO_3 is lifted by the *d*-type Jahn-Teller distortion and the "antiferromagnetic" orbital ordering, and it causes the ferromagnetism in YTiO_3 [1–5]. By contrast, no orbital ordering has yet been observed in LaTiO_3 , which undergoes *G*-type antiferromagnetic ordering. The origin of *G*-type antifer-

romagnetic ordering and the orbital state at the ground state in LaTiO_3 have been unclear [6,7]. Substitution of La by smaller rare earth ions in LaTiO_3 brings about magnetic transition from antiferromagnetism to ferromagnetism. It is not well understood how the orbital states of this system are related with the magnetic transition. Thus, the relationship between the magnetism and the orbital states is an attracting problem in this system [7]. So, in order to investigate the orbital states, we performed zero-field NMR measurements of RTiO_3 and the simulation of the NMR spectra assuming various orbital states.

Polycrystalline RTiO_3 (R=Y, Gd, and La) samples were prepared by arc melting of appropriate mixtures of R_2O_3 , TiO_2 , and Ti in an argon atmosphere. All samples were confirmed to be almost a single phase by powder x-ray measurements. $^{47,49}\text{Ti}$ NMR measurements of RTiO_3 were performed in zero external field. Frequency-swept NMR spectra were taken point by point of frequency by using a coherent pulsed spectrometer.

Figure 1 shows the frequency-swept $^{47,49}\text{Ti}$ NMR spectra in magnetically ordered states of RTiO_3 (R = Y, Gd, and La). The solid curves represent the results of

¹ Corresponding author. E-mail: kiyama@nucc.cc.nagoya-u.ac.jp

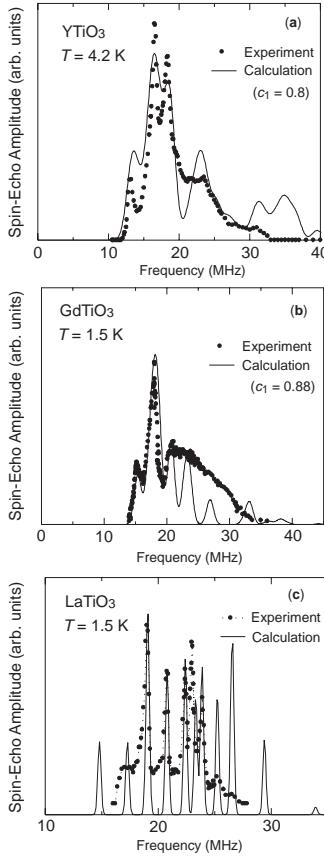


Fig. 1. $^{47,49}\text{Ti}$ NMR spectra in (a) YTiO_3 , (b) GdTiO_3 , and (c) LaTiO_3 . Solid circles represent experimental data taken in zero external field. Solid curves show the calculated spectra based on the orbital ordering model (see the text).

the simulation based on the orbital ordering model with the hyperfine hamiltonian \mathcal{H} . The hyperfine interaction \mathcal{H} on $3d$ transition-metal ions of a shell less than half-filled is expressed as [4],

$$\mathcal{H} = \mathcal{H}_{\text{mag}} + \mathcal{H}_{\text{el}}^{(1)} + \mathcal{H}_{\text{el}}^{(2)}, \quad (1)$$

$$\mathcal{H}_{\text{mag}} = 2\mu_B\gamma_n\hbar\langle r^{-3} \rangle_{\text{mag}}[-\kappa\mathbf{S} \cdot \mathbf{I} + \mathbf{L} \cdot \mathbf{I} + \xi\{L(L+1) - \frac{3}{2}(\mathbf{L} \cdot \mathbf{I})(\mathbf{L} \cdot \mathbf{S}) - \frac{3}{2}(\mathbf{L} \cdot \mathbf{S})(\mathbf{L} \cdot \mathbf{I})\}], \quad (2)$$

$$\mathcal{H}_{\text{el}}^{(1)} = \frac{S\xi e^2 Q}{I(2I-1)}\langle r^{-3} \rangle_{\text{el}}\{3(\mathbf{L} \cdot \mathbf{I})^2 + \frac{3}{2}(\mathbf{L} \cdot \mathbf{I}) - L(L+1)I(I+1)\}, \quad (3)$$

$$\mathcal{H}_{\text{el}}^{(2)} = (1 - \gamma_\infty)\frac{eq}{6I(2I-1)} \times \sum_{\alpha\beta} V_{\alpha\beta}[\frac{3}{2}(I_{\alpha\beta} + I_{\beta\alpha}) - \delta_{\alpha\beta}I^2], \quad (4)$$

where μ_B represents the Bohr magneton, γ_n the nuclear gyromagnetic ratio ($^{47}\gamma_n = 2\pi \times 2.400 \times 10^2 \text{ Hz/Oe}$ and $^{49}\gamma_n = 2\pi \times 2.405 \times 10^2 \text{ Hz/Oe}$), \hbar the Planck's con-

stant, $\langle r^{-3} \rangle_{\text{mag}}$ and $\langle r^{-3} \rangle_{\text{el}}$ the expectation values of r^{-3} for the $3d$ orbital, κ the Fermi contact interaction parameter, Q the nuclear quadrupole moment ($^{47}Q = +0.29$ and $^{49}Q = +0.24$ barns), γ_∞ the Sternheimer antishielding factor, $V_{\alpha\beta}$ ($\alpha, \beta = x, y, \text{and } z$) a component of the electric field gradient (EFG) tensor, \mathbf{S} the total spin, \mathbf{L} the total orbital momentum, l the orbital momentum, and \mathbf{I} the nuclear spin operator ($^{47}I = 5/2$ and $^{49}I = 7/2$).

The calculated curves reproduce well the experimental result in YTiO_3 . The curves are obtained by using the parameters, $\kappa = 0.83$, $\langle r^{-3} \rangle_{\text{mag}} = 0.5\langle r^{-3} \rangle_{\text{HF}}$, $\langle r^{-3} \rangle_{\text{el}} = 0.6\langle r^{-3} \rangle_{\text{HF}}$, and $\gamma_\infty = -4$ and $c_1 = 0.8$ where the $3d$ wave function of the $\text{Ti}(1)$ site is expressed as $\psi_1 = c_1yz + c_2xy$ ($c_1^2 + c_2^2 = 1$). The notation of the wave functions at $\text{Ti}(1)$ - $\text{Ti}(4)$ sites follows Ref. 4. $\langle r^{-3} \rangle_{\text{HF}}$ represents the Hartree-Fock value of 2.522 atomic units. The value of c_1 is consistent with theoretical studies [1,2]. The spectrum of GdTiO_3 is also well reproduced with the parameters $\kappa = 1$, $\langle r^{-3} \rangle_{\text{mag}} = 0.53\langle r^{-3} \rangle_{\text{HF}}$, $\langle r^{-3} \rangle_{\text{el}} = 0.6\langle r^{-3} \rangle_{\text{HF}}$, and $\gamma_\infty = -4$ and $c_1 = 0.87$, although a discrepancy is seen around 30 MHz. This result indicates that GdTiO_3 takes almost the same orbital ordering configuration as YTiO_3 . As for LaTiO_3 , an orbital ordering model accompanied with a D_{3d} distortion is proposed by Mochizuki and Imada [7]. Under the D_{3d} distortion, Ti $3d$ electron occupies the lower a_{1g} level such as $\frac{1}{\sqrt{3}}(xy + yz + zx)$. The solid curves in the Fig. 1(c) are obtained assuming this type of orbital ordering with the parameters $\kappa = 0.83$, $\langle r^{-3} \rangle_{\text{mag}} = 0.62\langle r^{-3} \rangle_{\text{HF}}$, $\langle r^{-3} \rangle_{\text{el}} = 0.6\langle r^{-3} \rangle_{\text{HF}}$, and $\gamma_\infty = -4$. The experimental results show an agreement with the calculated one and it supports this type of orbital ordering model.

In summary, we made $^{47,49}\text{Ti}$ NMR measurements on RTiO_3 ($\text{R} = \text{Y, Gd, and La}$) and the simulation of the NMR spectra assuming various orbital ordering. The NMR spectra of RTiO_3 were understood by the proposed orbital ordering models.

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- [1] T. Mizokawa, A. Fujimori, Phys. Rev. B **54** (1996) 5368.
- [2] H. Sawada *et al.*, Physica B **237-238** (1997) 46.
- [3] J. Akimitsu *et al.*, J. Phys. Soc. Jpn. **70** (2001) 3475.
- [4] M. Itoh *et al.*, J. Phys. Soc. Jpn. **68** (1999) 2783.
- [5] M. Itoh, M. Tsuchiya, J. Magn. Magn. Mater. **226-230** (2001) 874.
- [6] B. Keimer *et al.*, Phys. Rev. Lett. **85** (2000) 3946.
- [7] M. Mochizuki, M. Imada, J. Phys. Soc. Jpn. **69** (2000) 1982; **70** (2001) 2872.