

Electrical transport, magnetic, and structural properties of the vortex lattice in superconducting V_3Si

A. A. Gapud ^a, D. K. Christen ^a, J. R. Thompson^{a, b, 1}, M. Yethiraj ^a

^a*Oak Ridge National Laboratory, Oak Ridge, TN 37831-6061 USA*

^b*Department of Physics, University of Tennessee, Knoxville, TN 37996-1200 USA*

Abstract

Electrical, magnetic, and structural properties of the vortex lattice (VL) in single crystal V_3Si were studied by transport, bulk magnetometry and small-angle neutron scattering. Studies focused on the ‘peak effect’ in critical current density just below the upper critical field of this weak-pinning system. The overall picture is a slightly disordered VL easily re-ordered by transport-current ‘shaking’ and ultimately softening at the peak effect.

Key words: vortex lattice; metastability; peak effect; transport; SANS; flux pinning; V_3Si

The well-known ‘peak effect’ in critical current density J_c has attracted renewed attention after it was found to exist in both high-temperature- and conventional superconductors. Although this was traditionally explained in terms of competition between the elasticity of the vortex lattice (VL) and the pinning energies, with the softening of the lattice close to the superconducting transition giving way to disorder and more effective pinning [1,2], recent studies [3] have called this picture into question. The traditional picture is found to be most applicable to the investigation regime and results of this study.

A complication in studying the peak effect in anisotropic and/or high-temperature superconductors is the influence of thermal fluctuations. In this study, thermal activation is strongly suppressed by the use of clean, high- κ ($\kappa = 25$), weakly pinned single-crystal samples of the ‘conventional’ A15 (cubic symmetry) superconductor V_3Si . The samples were cut from the same cylindrical crystal used in Ref. [4], with an estimated mean free path $l = 320 \text{ \AA} \gg \xi_0 = 38 \text{ \AA}$, a critical temperature T_c of 16.3 K, and extrapolated $H_{c2}(0)$ of about 22 T. The Ginzburg number, which quantifies the significance of thermal effects, is estimated

to be about 10^{-7} , which would *a priori* eliminate any measurable possibility of a melting transition separate from the superconducting transition [5].

In this study we combine data from small-angle neutron scattering (SANS), magnetization measurements, and transport measurement, all on samples from the same crystal ingot. All measurements were done with the field applied parallel to the crystallographic $\langle 110 \rangle$ direction. The neutron scattering was conducted on a cylindrical section using horizontal-field geometry at various constant fields as a function of temperature and thermal history. Magnetization was measured on a disk section using a SQUID Magnetometer, with the field along the central axis and as a function of applied magnetic field and temperature. A 1 mm square rod sample was used for transport current-voltage ($V(I)$) measurements using a standard, low-resistance, 4-contact strip configuration, with the field perpendicular to the length of the rod. The applied current for each data point consists of one alternating cycle consisting of two 30 ms square pulses separated by a 2 s null signal; the null pause between consecutive data points is approximately 3 s. Voltage is measured during a smaller interval within each current pulse.

The intensity of a first-order Bragg diffraction spot from SANS was found [6] to decrease monotonically

¹ Corresponding author. E-mail: jrt@utk.edu

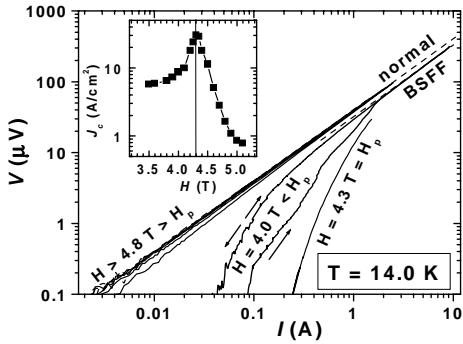


Fig. 1. Transport $V(I)$ curves at some fields about H_p for $T = 14.0$ K. Inset: corresponding $J_c(H)$ peak. (See text.)

with increasing temperature, vanishing to background values only at the temperature T_p corresponding to the peak effect for this field, suggesting well-defined VL structure without melting. In conjunction with this is an azimuthal and radial broadening of the Bragg spot towards T_p . These are consistent with the highly ordered, so-called Bragg glass, with steady encroachment of disorder as pinning eventually overwhelms the elasticity of the VL and vortices accommodate themselves to pinning sites. However, long-range order exists all the way up to T_p , well above the magnetically determined irreversibility temperature (see below), with no evidence of polycrystalline structure. In addition, at each temperature the intensity was slightly higher and the breadth narrower when field-warming from 2 K, compared to field-cooling from above T_c , indicating ‘healing’ of metastabilities at low temperatures.

Magnetization was observed [6] to be nearly reversible over a wide range of fields, starting at a field H_{irr} and extending well toward $H_{c2}(T)$, below which an irreversibility loop occurs, marking the peak effect in J_c . The weakness of this effect confirms the weak pinning in this very clean system and the absence of thermal activation. The same kind of subtlety was also seen in the temperature domain. The near-reversibility of the magnetization between H_{irr} and the peak-effect field H_p translates to a voltage scale that yields a small but measurable J_c using transport current. At fields below H_{irr} , pinning increases as VL elasticity declines at more dilute vortex densities while pinning forces increase.

Transport $V(I)$ measurements were taken over a wide range of temperatures and fields in the vicinity of the peak effect $H_p(T_p)$. Typically, logarithmic plots of $V(I)$ were found to rise rapidly with current and saturate to slope = 1 at high current levels, again implying the absence of melting. This is shown in Fig. 1, where temperature was held constant and $V(I)$ is shown for a few fields about and including H_p . The inset shows the corresponding peak effect in J_c . For $H < H_p$, consistent with previous studies of NbSe_2 [7], the virgin

VL was found to be metastable, as manifested by an irreversible, higher- I_c $V(I)$ curve. From this state, we have found [6] that a reversible, lower- I_c , and temporally stable $V(I)$ could be reproducibly obtained by the ‘shaking’ action of the pulsed current at high enough levels, thus suggesting a coexistence of ordered and disordered phases in the virgin VL. Stable $V(I)$ curves for $H < H_p$ were found to be ohmic over a wide range of $J > J_c$, and a simple calculation confirms that the resistivity corresponding to this linear portion is well below the expected normal-state level; instead it coincides with the level expected for ordered, Bardeen-Stephen flux flow (BSFF). For $H > H_p$, $V(I)$ at high currents approaches the level expected for normal-state resistivity. At $H = H_p$, the $V(I)$ curve was found to remain below either level, indicative of the maximal pinning.

The resulting magnetic phase diagram [6] confirms consistency between transport data and magnetization data. The overall picture is that of a virgin VL with significant long-range order coexisting with slight imperfections which are easily erased by current-driven agitation, as facilitated by strong, elastic interaction among the vortices. As the peak effect is approached, competing order and disorder (pinning) culminate in a crossover between pinning energy and elastic energy. Therefore the well-known picture of VL softening [1,2] is sufficiently applicable, at least for these fields and temperatures, which are much higher than in similar studies on other conventional superconductors [7,8].

Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725.

References

- [1] A. B. Pippard, *Philos. Mag.* **19** (1969) 217.
- [2] A. I. Larkin, Yu. N. Ovchinnikov, *J. Low Temp. Phys.* **34** (1979) 409, plus references therein.
- [3] M. J. Higgins and S. Bhattacharya, *Physica C* **257** (1997) 232, plus references therein.
- [4] M. Yethiraj, D. K. Christen, D. McK.Paul, P. Miranovic, J. R. Thompson, *Phys. Rev. Lett.* **82** (1999) 5112.
- [5] G. P. Mikitik, E. H. Brandt, *Phys. Rev. B* **64** (2001) 18514, plus references therein.
- [6] A. A. Gapud, D. K. Christen, J. R. Thompson, M. Yethiraj, unpublished.
- [7] Y. Paltiel, E. Zeldov, Y. N. Myasoedov, H. Shtrikman, S. Bhattacharya, M. J. Higgins, Z. L. Xiao, E. Y. Andrei, P. L. Gammel, D. J. Bishop, *Nature* **403** (2000) 398, plus references therein.
- [8] Z. L. Xiao, E. Y. Andrei, P. Shuk, M. Greenblatt, *Phys. Rev. B* **64** (2001) 094511.