

Controlling the collective motion of interacting particles: Analytical study via the nonlinear Fokker-Planck equation

S. Savel'ev ^{a,1}, F. Marchesoni ^{a,b}, and Franco Nori ^{a,c}

^a*Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan*

^b*INFM and Physics Department, Universita' di Camerino, I-62032 Camerino, Italy*

^c*Center for Theoretical Physics, Department of Physics, CSCS, University of Michigan, Ann Arbor, MI 48109-1120, USA*

Abstract

We propose a nonlinear Fokker-Planck equation for the description of stochastic transport in systems of short-range interacting particles. We develop a perturbation scheme, valid for high-frequencies, for particles driven by a time-dependent temperature ratchet. For a particular type of asymmetric potential, the net DC current shows two current inversions when increasing either the particle density or the interaction strength.

Key words: Collective transport of short-range interacting particles; particles driven by a time-dependent temperature;

Stochastic transport on spatially-asymmetric periodic (“ratchet”) potentials has been intensively studied in systems far from equilibrium, and mostly in the context of molecular motors (see, e.g., the reviews [1]). In such Brownian motors, a net motion of particles may occur even in the absence of any DC driving force, due to the rectification of non-equilibrium thermal fluctuations.

Analytical studies of ratchets are usually performed using the *linear* Fokker-Planck equation, which is valid for an assembly of *non*-interacting particles. It is important to study the physically relevant case of how particle-particle interactions influence the stochastic transport in Brownian motors. In this paper, we derive and analyze the nonlinear equation describing stochastically-moving particles with short range interaction. Here we consider the so-called temperature ratchet [2], where the time-oscillations of the temperature drive the motion of particles.

Our starting point is the overdamped equation of motion for pairwise-interacting particles in an asym-

metric periodical potential \mathcal{U} ,

$$\dot{x}_i = -\frac{\partial \mathcal{U}(x_i)}{\partial x_i} - \sum_{j \neq i} \frac{\partial}{\partial x_i} \mathcal{W}(x_i - x_j) + \sqrt{2k_B T} \xi^{(i)}(t), \quad (1)$$

with temperature T , Boltzmann constant k_B , and pair potential \mathcal{W} . The Gaussian white noise $\xi^{(i)}$ satisfies the relation $\langle \xi_\alpha^{(i)}(t) \xi_\beta^{(j)}(t + \tau) \rangle = \delta(\tau) \delta_{\alpha\beta} \delta_{i,j}$. Applying the Bogolyubov method, an infinite set of many-particle distribution functions can be constructed. Such a hierarchy can be truncated in the “mean field” approximation by replacing the binary distribution function with the product of two one-particle distribution functions $F_1(t, x)$; hence we obtain the nonlinear integro-differential equation:

$$\frac{\partial F_1(t, x)}{\partial t} = \frac{\partial}{\partial x} \left[F_1(t, x) \frac{\partial \mathcal{U}^{\text{eff}}}{\partial x} + k_B T \frac{\partial F_1(t, x)}{\partial x} \right] \quad (2)$$

with the “mean-field” potential

$$\mathcal{U}^{\text{eff}} = \mathcal{U}(x) + \int dx' \mathcal{W}(x - x') F_1(t, x') \quad (3)$$

which is periodic and has the same spatial period l as the substrate potential \mathcal{U} . The distribution function

¹ Digital materials lab., FRS, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan, FAX: +81-48-467-9650, e-mail: ssavellev@postman.riken.go.jp

$F_1(t, x)$ can be normalized, for instance, by the total number of particles in the system. In this case the spatial average of the function $F_1(t, x)$ coincides with the density of particles \bar{n} . If the interaction range of the particles is the smallest distance in the problem, the interaction potential can be taken in the local limit $\mathcal{W}(x) = g\delta(x)$. This simplifies considerably the nonlinear Fokker-Planck equation under study:

$$\frac{\partial F_1}{\partial t} = \frac{\partial}{\partial x} \left[F_1 \frac{\partial \mathcal{U}}{\partial x} + k_B T(t) \frac{\partial F_1}{\partial x} + g F_1 \frac{\partial F_1}{\partial x} \right]. \quad (4)$$

Now the temperature T is chosen to be a periodic time-dependent function [2], say $T(t) = T(1 + a \cos(\omega t))$, $a < 1$. In the high frequency limit, $[\max_x(\mathcal{U}) - \min_x(\mathcal{U})]/(\omega l^2) \ll 1$, $k_B T/(\omega l^2) \ll 1$, and $g\bar{n}/(\omega l) \ll 1$, the solution of Eq. (4) can be expanded with respect to the reciprocal of the frequency $1/\omega$:

$$F_1(\tau, x) = \sum_{i=0}^{\infty} \frac{1}{\omega^i} \phi_i(\tau, x) \quad (5)$$

where $\tau = \omega t$ is a dimensionless time. The following periodic and normalizing conditions can be taken: $\phi_i(\tau + 2\pi, x) = \phi_i(\tau, x) = \phi_i(\tau, x + l)$, $\int_0^l dx \phi_{i \neq 0}(x) = 0$, and $\int_0^l dx \phi_0(x)/l = \bar{n}$. Omitting the detailed description of the iterative procedure, here we concentrate on the physical results. Instead of the usual Boltzmann distribution, the equilibrium distribution function $\phi_0(x)$ of the very short-range interacting particles is described by the transcendental equation:

$$\phi_0(x) = C(\bar{n}) \exp \left(-\frac{\mathcal{U}(x) + g\phi_0(x)}{k_B T} \right) \quad (6)$$

with a constant $C(\bar{n})$ defined by the normalization condition. By solving equation (4) up to the third approximation with respect to $1/\omega$, we obtain the equation for the DC net current related to the nonequilibrium state induced by the time oscillating temperature:

$$J(\bar{n}, \omega, T) = \frac{k_B^2 T^2 a^2}{2\omega^2 \int_0^l \frac{dx}{\phi_0}} \int_0^l dx \left\{ \frac{(\mathcal{U}'')^2 \mathcal{U}' (4k_B T + 5g\phi_0)}{(k_B T + g\phi_0)^3} \right. \\ \left. - \frac{2k_B T (\mathcal{U}')^3 \mathcal{U}'' (4k_B T + 5g\phi_0)}{(k_B T + g\phi_0)^5} \right. \\ \left. - \frac{g\phi_0 (\mathcal{U}')^5 (6k_B^2 T^2 + 10gk_B T \phi_0 + 3g^2 \phi_0^2)}{(k_B T + g\phi_0)^7} \right\}, \quad (7)$$

with $' \equiv \partial/\partial x$. This expression can be simplified in the limit of zero interaction, giving the known result [1]:

$$J = \frac{2a^2 l \bar{n} \int_0^l dx \mathcal{U}' (\mathcal{U}'')^2}{\omega^2 \int_0^l dx \exp(\frac{\mathcal{U}}{k_B T}) \int_0^l dx \exp(-\frac{\mathcal{U}}{k_B T})} \quad (8)$$

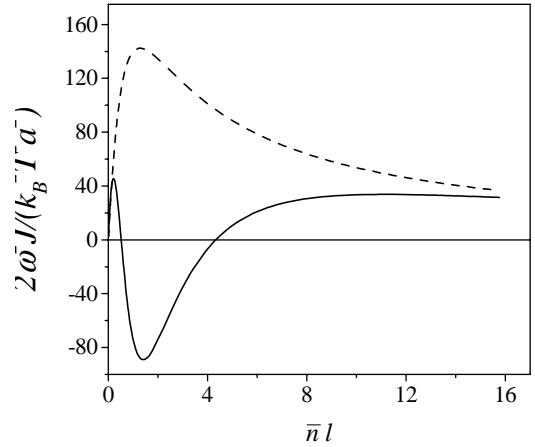


Fig. 1. The DC probability current versus particle density for the potential $\mathcal{U}/k_B T = a_0 \sin(2\pi x/l) + a_1 \sin(4\pi x/l - \beta_1) + a_2 \sin(6\pi x/l - \beta_2)$. Two sets of parameters are shown here: $a_0 = 1$, $a_1 = 0.2$, $a_2 = -0.06$, $\beta_1 = 0.45$, $\beta_2 = 0.45$ for the solid curve with *two current inversions*; and $a_0 = 1$, $a_1 = 0.01$, $a_2 = 0$, $\beta_1 = 0.45$ for the dashed curve with *no current inversions*. These two examples illustrate two types of allowed $J(n)$'s for interacting particles driven by a time-oscillating temperature $T(t)$ and moving on a spatially asymmetric periodic potential.

and can also provide the current in the strong interaction limit, $\max(k_B T; \max_x \mathcal{U} - \min_x \mathcal{U}) \ll g\bar{n}l \ll \omega l^2$,

$$J = \frac{5k_B^2 T^2 a^2}{2\omega^2 g^2 l^2 \bar{n}} \int_0^l dx l \mathcal{U}' (\mathcal{U}'')^2. \quad (9)$$

It is clear from the last two equations, that the sign of the current is the same in the case of weak and strong interactions for *any* asymmetric potential. This means that *either there is no current inversion or that the current inverts an even number of times when increasing either the strength g of interaction or the particle density \bar{n}* . Numerical calculations of the integral in expression (7) show examples of these two scenarios.

In conclusion, we have derived the nonlinear Fokker-Planck equation for systems of locally interacting particles and obtained the expression for the net DC current for temperature ratchet in high frequency limit.

References

- [1] P. Reimann, Physics Reports 361 (2002) 57; R.D. Astumian, Science 276 (1997) 917.
- [2] P. Reimann, R. Bartussek, R. Haussler, P. Hanggi, Phys. Lett. A 215 (1996) 26.