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Abstract

We propose a nonlinear Fokker-Planck equation for the description of stochastic transport in systems of short-
range interacting particles. We develop a perturbation scheme, valid for high-frequencies, for particles driven by a
time-dependent temperature ratchet. For a particular type of asymmetric potential, the net DC current shows two
current inversions when increasing either the particle density or the interaction strength.
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Stochastic transport on spatially–asymmetric peri-
odic (“ratchet”) potentials has been intensively stud-
ied in systems far from equilibrium, and mostly in the
context of molecular motors (see, e.g., the reviews [1]).
In such Brownian motors, a net motion of particles may
occur even in the absence of any DC driving force, due
to the rectification of non-equilibrium thermal fluctu-
ations.

Analytical studies of ratchets are usually performed
using the linear Fokker-Planck equation, which is
valid for an assembly of non-interacting particles. It is
important to study the physically relevant case of how
particle-particle interactions influence the stochastic
transport in Brownian motors. In this paper, we de-
rive and analyze the nonlinear equation describing
stochastically-moving particles with short range in-
teraction. Here we consider the so-called temperature
ratchet [2], where the time-oscillations of the temper-
ature drive the motion of particles.

Our starting point is the overdamped equation of
motion for pairwise-interacting particles in an asym-
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metric periodical potential U ,

ẋi = − ∂U(xi)

∂xi
−

∑
j �=i

∂

∂xi
W(xi − xj)

+
√

2kBT ξ (i)(t), (1)

with temperature T , Boltzmann constant kB, and pair
potential W. The Gaussian white noise ξ (i) satisfies
the relation < ξ

(i)
α (t)ξ

(j)
β (t + τ) >= δ(τ)δαβδi,j . Ap-

plying the Bogolyubov method, an infinite set of many-
particle distribution functions can be constructed.
Such a hierarchy can be truncated in the “mean field”
approximation by replacing the binary distribution
function with the product of two one-particle distribu-
tion functions F1(t, x); hence we obtain the nonlinear
integro-differential equation:

∂F1(t,x)

∂t
=

∂

∂x

[
F1(t, x)

∂Ueff

∂x
+ kBT

∂F1(t, x)

∂x

]
(2)

with the “mean-field” potential

Ueff = U(x) +

∫
dx′W(x − x′)F1(t, x

′) (3)

which is periodic and has the same spatial period l as
the substrate potential U . The distribution function
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F1(t, x) can be normalized, for instance, by the total
number of particles in the system. In this case the spa-
tial average of the function F1(t, x) coincides with the
density of particles n̄. If the interaction range of the
particles is the smallest distance in the problem, the
interaction potential can be taken in the local limit
W(x) = gδ(x). This simplifies considerably the non-
linear Fokker-Planck equation under study:

∂F1

∂t
=

∂

∂x

[
F1

∂U
∂x

+ kBT (t)
∂F1

∂x
+ gF1

∂F1

∂x

]
. (4)

Now the temperature T is chosen to be a pe-
riodic time-dependent function [2], say T (t) =
T (1 + a cos(ωt)), a < 1. In the high frequency limit,
[maxx(U)−minx(U)]/(ωl2) � 1, kBT/(ωl2) � 1, and
gn̄/(ωl) � 1, the solution of Eq. (4) can be expanded
with respect to the reciprocal of the frequency 1/ω:

F1(τ, x) =

∞∑
i=0

1

ωi
φi(τ, x) (5)

where τ = ωt is a dimensionless time. The follow-
ing periodic and normalizing conditions can be taken:

φi(τ +2π, x) = φi(τ, x) = φi(τ, x+ l),
∫ l

0
dxφi�=0(x) =

0, and
∫ l

0
dxφ0(x)/l = n̄. Omitting the detailed de-

scription of the iterative procedure, here we concen-
trate on the physical results. Instead of the usual Boltz-
mann distribution, the equilibrium distribution func-
tion φ0(x) of the very short-range interacting particles
is described by the transcendental equation:

φ0(x) = C(n̄) exp

(
−U(x) + g φ0(x)

kBT

)
(6)

with a constant C(n̄) defined by the normalization con-
dition. By solving equation (4) up to the third approx-
imation with respect to 1/ω, we obtain the equation
for the DC net current related to the nonequilibrium
state induced by the time oscillating temperature:

J( n̄ , ω, T ) =
k2

BT 2a2

2ω2
∫ l

0
dx
φ0

l∫
0

dx

{
(U ′′)2U ′(4kBT + 5gφ0)

(kBT + gφ0)3

− 2kBT (U ′)3U ′′(4kBT + 5gφ0)

(kBT + gφ0)5

− gφ0(U ′)5
(
6k2

BT 2 + 10gkBTφ0 + 3g2φ2
0

)
(kBT + gφ0)7

}
, (7)

with ′ ≡ ∂/∂x. This expression can be simplified in the
limit of zero interaction, giving the known result [1]:

J =
2a2ln̄

∫ l

0
dxU ′(U ′′)2

ω2
∫ l

0
dx exp

( U
kBT

) ∫ l

0
dx exp

(− U
kBT

) (8)
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Fig. 1. The DC probability current versus particle den-

sity for for the potential U/kBT = a0 sin(2πx/l)

+a1 sin(4πx/l − β1)+a2 sin(6πx/l − β2). Two sets of parame-

ters are shown here: a0 = 1, a1 = 0.2, a2 = −0.06, β1 = 0.45,

β2 = 0.45 for the solid curve with two current inversions; and

a0 = 1, a1 = 0.01, a2 = 0, β1 = 0.45 for the dashed curve

with no current inversions. These two examples illustrate two

types of allowed J(n)’s for interacting particles driven by a

time-oscillating temperature T (t) and moving on a spatially

asymmetric periodic potential.

and can also provide the current in the strong inter-
action limit, max(kBT ; maxx U − minx U) � gn̄ l �
ωl2 ,

J =
5k2

BT 2a2

2ω2g2l2n̄

l∫
0

dxU ′(U ′′)2. (9)

It is clear from the last two equations, that the sign of
the current is the same in the case of weak and strong
interactions for any asymmetric potential. This means
that either there is no current inversion or that the cur-
rent inverts an even number of times when increasing
either the strength g of interaction or the particle den-
sity n̄. Numerical calculations of the integral in expres-
sion (7) show examples of these two scenarios.

In conclusion, we have derived the nonlinear Fokker-
Planck equation for systems of locally interacting par-
ticles and obtained the expression for the net DC cur-
rent for temperature ratchet in high frequency limit.
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