

Magnetic and electrical properties of single-crystal $\text{La}_{2-x}\text{Sr}_x\text{Cu}_{1-y}\text{Ni}_y\text{O}_4$

Nobuaki Watanabe^{a,1}, Takahiko Masui^{a,b}, Yutaka Itoh^{a,b}, Takato Machi^a, Isao Kato^a,
Naoki Koshizuka^a, Masato Murakami^a,

^a*Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-10-13 Shinonome, Koto-ku,
Tokyo 135-0062, Japan*

^b*Japan Science and Technology Corporation*

Abstract

We report the out-of-plane and in-plane magnetic susceptibility and resistivity of Ni-doped $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ single crystals. Our data shows that in lightly Sr doped compounds the Néel temperature T_N increased with increasing Ni concentration. As the temperature is lowered, the resistivity deviates from the impurity band conduction process and becomes dominated by the variable range hopping process associated with the evolving of antiferromagnetic ordering.

Key words: LaSrCuO; Ni; substitution effect; Neel temperature

1. Introduction

While it is well known that doped holes strongly disturb the long-range magnetic order, the detailed mechanism of the rapid suppression of the Néel temperature T_N caused by hole doping is poorly understood. Recently, Hücker *et al.* reported that Zn impurities lead to an increase of the T_N in slightly hole doped La_2CuO_4 polycrystals, and this increase of T_N correlates with an increase of the resistivity[1]. More recently the increase of T_N was also reported in Ni doped $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ polycrystals by Kato *et al* [2].

We present results of the temperature dependence of the susceptibilities and resistivities for $\text{La}_{1.99}\text{Sr}_{0.01}\text{Cu}_{1-y}\text{Ni}_y\text{O}_4$ ($0 \leq y \leq 0.1$) single crystals. At high temperatures, the resistivity is described within the impurity band conduction model. As the temperature is lowered, the resistivity behavior change to the variable range hopping model associated with the evolving of antiferromagnetic (AF) ordering.

2. Experimental details

$\text{La}_{1.99}\text{Sr}_{0.01}\text{Cu}_{1-y}\text{Ni}_y\text{O}_4$ ($0 \leq y \leq 0.1$) single crystals were grown by the Traveling-Solvent Floating-Zone (TSFZ) method. To reduce the excess oxygen all samples have been annealed for 50 h at 650 °C in pure Ar atmosphere. The magnetic susceptibility was measured using a superconducting quantum interference device (SQUID) magnetometer. The electrical resistivity was measured by the conventional four-probe method.

3. Results and discussion

Figure 1 shows the temperature dependence of the out-of-plane susceptibilities for $\text{La}_{1.99}\text{Sr}_{0.01}\text{Cu}_{1-y}\text{Ni}_y\text{O}_4$ ($0 \leq y \leq 0.1$) single crystals. In contrast to the case of $x = 0$, in which the well-known linear decrease of T_N is observed with increasing Ni content, T_N was found to increase with Ni content for the Sr substituted crystals.

¹ Corresponding author. E-mail: nabe@istec.or.jp

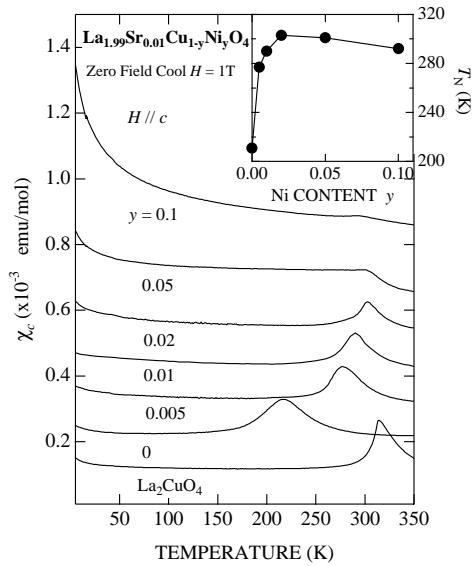


Fig. 1. The temperature dependence of the out-of-plane susceptibilities for $\text{La}_{1.99}\text{Sr}_{0.01}\text{Cu}_{1-y}\text{Ni}_y\text{O}_4$ ($0 \leq y \leq 0.1$) single crystals. The curves are offsets by 1×10^{-4} emu/mol from top to bottom. Inset: The Néel temperature T_N as a function of the Ni content for $\text{La}_{1.99}\text{Sr}_{0.01}\text{Cu}_{1-y}\text{Ni}_y\text{O}_4$.

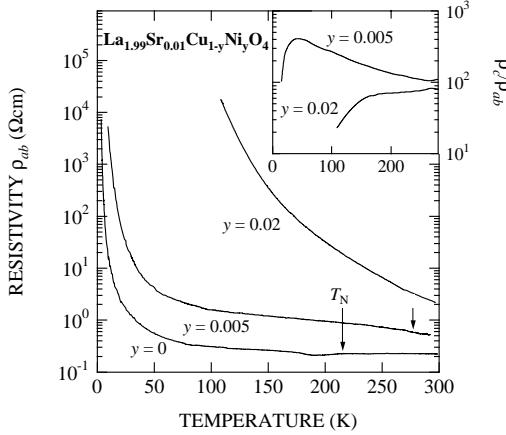


Fig. 2. The temperature dependence of the in-plane resistivity for $\text{La}_{1.99}\text{Sr}_{0.01}\text{Cu}_{1-y}\text{Ni}_y\text{O}_4$ ($y = 0, 0.005$ and 0.02) single crystals. Inset: Temperature dependences of the resistivity anisotropy ratio ρ_c/ρ_{ab} for $\text{La}_{1.99}\text{Sr}_{0.01}\text{Cu}_{1-y}\text{Ni}_y\text{O}_4$ ($y = 0.005$ and 0.02) single crystals. The ρ_c/ρ_{ab} shows that the 2D resistivity behavior changes to the 3D one at lower temperatures.

Hücker *et al.*[1] measured the electrical resistivity in Zn doping system and showed that Zn doping lowers the localization radius of the holes. Their conclusion was that as the holes become more mobile, the T_N increases. In the framework of the frustration model Korenblit *et al.*[3] show the combined effects of hole doping and magnetic dilution more quantitatively.

Figure 2 shows the temperature dependence of the in-plane resistivity for $\text{La}_{1.99}\text{Sr}_{0.01}\text{Cu}_{1-y}\text{Ni}_y\text{O}_4$ ($y = 0, 0.005$ and 0.02) single crystals. All samples exhibit a semiconducting-like behavior. At high temperatures, the resistivity is described within the impurity band conduction (IBC) mechanism which shows temperature dependence as $\rho(T) \propto \exp(\varepsilon_a/kT)$. As the temperature is lowered, the resistivity is described within the variable range hopping (VRH) model. In VRH model, the resistivity shows the temperature dependence as $\rho(T) \propto \exp[(T_o/T)^\alpha]$, where T_o is a characteristic temperature related to the localization radius of the holes. The values of α depend on the dimensionality of the system.

By analyzing the in-plane resistivity data, the $\rho(T)$ phase diagram for $\text{La}_{1.99}\text{Sr}_{0.01}\text{Cu}_{1-y}\text{Ni}_y\text{O}_4$ is summarized in Fig. 3. The T_N is also plotted. The Ni content dependences of the crossover temperature from IBC to VRH appear to be similar to that of the T_N . This fact suggests that the temperature change of mechanism of the $\rho(T)$ is closely related to the evolving of AF ordering.

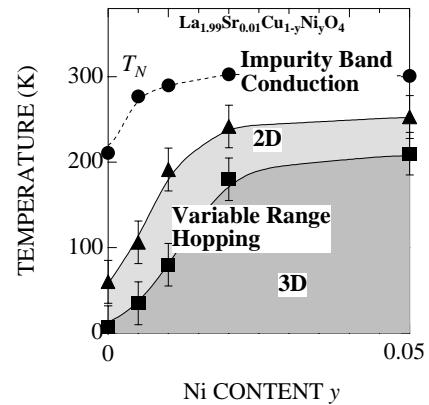


Fig. 3. $\rho(T)$ phase diagram for $\text{La}_{1.99}\text{Sr}_{0.01}\text{Cu}_{1-y}\text{Ni}_y\text{O}_4$. The Néel temperature T_N is also plotted. The lines are guides to the eye. The temperature change of mechanism of the $\rho(T)$ is closely related to the evolving of antiferromagnetic ordering.

Acknowledgements

This work is supported by NEDO.

References

- [1] M. Hücker *et al.*, Phys. Rev. B **59** (1999) R725.
- [2] I. Kato *et al.*, in Meeting Abstracts of the Physical Society of Japan, Tokushima, 2001, Vol. **56**, p. 490 [in Japanese].
- [3] I. Ya. Korenblit *et al.*, Phys. Rev. B **60** (1999) R15017.