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Abstract

Non-ohmic conduction of n-InSb with different donor concentrations (Nd = 2 1014‘1 1015 cm−3) in perpendicular
magnetic fields has been measured at low temperatures, in order to infer the impurity band mobility µi with the aid
of the two-band analysis. The decrease of µi with increasing magnetic fields has been found to reflect exactly the
shrinkage of donor wave functions due to magnetic field and the magnetic-field induced metal-insulator transition is
an event in the impurity band. The temperature dependence of µi in moderate magnetic fields above the transition
field Bc appears to obey the Mott variable-range hopping law as µi = µ0 exp[-(T0/T )x ] with x=1/4.
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1. Introduction

The effective Bohr radius of donors in n-InSb is very
large (a0 = 65 nm) on account of its small electronic
effective mass (m* = 0.014m0). In the absence of a
magnetic field, the donor wave functions even for a
pure n-InSb attainable tend to overlap and the metal-
lic impurity band is formed because the concentration
of donors of Nd ∼ 2 1014 cm−3 at least is expected
meaning the average distance between donors of ∼100
nm) [1]. Because of softness of the donor wave function
to magnetic field in this material, the metal-insulator
(M-I) transition can be induced in a moderate mag-
netic field (γ = h̄ωc/2R∗

y ∼ 1 at B = 0.13 T, where ωc

= eB/m∗) [2] and the ‘magnetic freeze-out’ shows up
with increasing magnetic field [3] reflecting the shrink-
age of the wave functions due to magnetic field [4]. The
conspicuous non-ohmic behavior with the increase of
electric field is observed in n-InSb at low temperatures,
which was explained by Miyazawa-Ikoma as the trans-
fer of carriers from the impurity band to the conduction
band due to the impact ionization in high electric fields
[5]. In this paper, we demonstrate the non-ohmic con-
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duction of n-InSb with different carrier concentrations
n0 systematically in perpendicular magnetic fields at
low temperatures, and discuss the temperature and
magnetic-field dependence of the impurity band mo-
bility extracted from the two-band analysis [5,6].

2. Results and Discussion

Investigated samples in the present work are selected
from the ones described in the ref. [1] so that the carrier
concentration n0 (= Nd - Na) ranges from 8 1013 to
5 1014 cm−3 with nearly constant compensation ratio
K = Na/Nd = 0.5 ∼ 0.6.

Typical characteristics of the non-linear electric-field
effect under magnetic fields on rather high-purity sam-
ple C2-462a (n0 = 1.3 1014 cm−3) at liquid He temper-
atures are shown in Fig.1, which shows the resistivity
ρ at various transverse magnetic fields as a function
of electric field. A sharp decrease of ρ appears near
between 0.1∼1.0 V/cm, depending on magnetic field
and temperature, followed by the slow decrease char-
acterized by independence of temperature. The effect
of electric field on the Hall coefficient (which is not
shown) is also striking. We have analyzed these data by
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Fig. 1. Electric-field dependence of the resistivity under various

transverse magnetic fields at 4.2 and 1.4 K for C2-462a.

the method proposed by Miyazawa-Ikoma [5], assum-
ing the two-band model in the presence of a magnetic
field, obtaining nc/n0 (nc : the concentration in the
conduction band) and the mobility of the donor band
µi as a function of electric field under various magnetic
fields.

According to the Yafet-Keyes-Adams (YKA) theory
[4], the wave function in the perpendicular direction is
the form: Ψ(r) ∼ exp(-r2/4a2

⊥) where a⊥ is the radius
of a donor wave function in direction perpendicular to
the magnetic field [4]. Assuming µi in the ohmic region
|Ψ(rs)|2, µi tends to be proportional to exp(-r2s/2a2

⊥)
where rs gives one-half the average distance between
donors [5,6]. The variation of the impurity band mo-
bility µi(B) (at 1.4 K) obtained for each sample with
increasing magnetic field has been found to follow exp
(-r2

s/2a2
⊥) definitely below the critical magnetic field

Bc of the magnetic-field induced M-I transition [6].
The magnetic-field induced M-I transition in n-InSb
has been the subject of much interest. Shayegan et al.
[7] and Choi et al.[8] explained that the M-I transition
occurs in the impurity band, based on the magneto-
transport data under high magnetic fields [7]. µi(B)
obtained is almost independent of temperature below
Bc and the ratio µi(4.2K)/µi(1.4K) starts to increase
just around Bc with increasing field [6], which is surely
an event in the impurity band. Our result provides an-
other evidence for the occurrence of the M-I transition
in the impurity band.
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Fig. 2. Impurity band mobility µi in the ohmic region is plot-

ted as a function of T−1/4 under various magnetic fields for

C2-462a.

The temperature dependence of µi under various
magnetic fields is plotted in Fig. 2 as log µi versus
T−1/4 for the sample mentioned (Bc ∼ 0.24 T). In mod-
erate magnetic fields above Bc, µi appears to follow µi

= µ0exp[-(T0/T )x] with x=1/4 indicating the variable-
range hopping (VRH) between localized states in three
dimension. Here, T0 = 16/[kN(EF )ξ3][9] where N(EF )
is the density of states at the Fermi level, ξ the local-
ization length. T0 steeply decreases from 1000 K for B
= 0.6 T to 5.2 K for B=0.35 T with decreasing mag-
netic field, reflecting the rapid growth of ξ as the sys-
tem approaches Bc from the insulating side.
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