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Abstract

Bose-Einstein condensates (BEC) realized in alkali atomic gases with the hyperfine state F = 1 keep ”spin” states
degenerate and active under an optical trap. These systems, so-called spinor BEC are analogous to the A-phase
of the superfluid 3He. Among various topological structures, the Mermin-Ho and Anderson-Toulouse vortices are
proposed in superfluid 3He-A phase. We demonstrate by solving the extended Gross-Pitaevskii equation that these
topological structures are thermodynamically stable in ferromagnetic spinor BEC under rotation. Furthermore, we
show the collective modes for such the vortices within Bogoliubov theory.
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1. Introduction

The atomic gases with the hyperfine spin F = 1
have been Bose-condensed via the optical methods as
named a spinor Bose-Einstein condensate (BEC)[1,2],
which provides a research field to investigate the exotic
topological structuers. The topological defects, such as
skyrmion, Mermin-Ho texture, and monopole, play an
essential role in various fields of the physics, ranging
from condensed matter physics to high energy physics.
The theoretical study of a spinor BEC was intiated by
Ohmi and Machida[3], and Ho[4], who pointed out the
richness of the vortices and the topological defects.

In our previous works[5], for the ferromagnetic case,
the thermodynamic stability of the topological defect,
Mermin-Ho(MH) vortex, has been shown by consider-
ing the effect of the external rotation. In addition to
this continuous vortex, for the ferromagnetic case, the
〈1, 0,−1〉 vortex, which the polar state is localized in
the vortex core, also is favored. In the present paper,
we investigate the stability of the MH vortex, namely,
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the anormalous modes which present the instability of
this state.

Since we consider the Bose condensed system in the
ferromagnetic F =1 situation, the order parameters are
characterized by the hyperfine sublevelsmF = 1, 0,−1.
The Mermin-Ho (MH) vortex then is described by
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where the bending angle β(r) is 0 ≤ β(r) ≤ π and ϕ
signifies the polar angle in polar coordinates. n(r) is
the total density profile, which is given by solving the
Gross-Pitaevskii equation[5]. The spin direction is de-
noted by the l-vector and is given as l̂(r) = ẑ cos β +
sin β(cosφx̂+ sin φŷ) where β varies from β(0) = 0 to
β(R) = π

2
(= π) for MH (Anderson-Toulouse (AT)) (R

is the outer boundary of the cloud). Thus the spin mo-
ment is flared out to the radial direction and at the cir-
cumference it points outward for MH and downwards
for AT.
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2. Method and Results

The time-dependent Gross-Pitaevskii (GP) equation
in a spinor BEC is obtained for the condensate wave
functions ψj (j=1,0,−1)[3,4] as

ih̄
∂

∂t
ψi(r, t) =

[{
hi(r) + gn

∑
k

|ψk|2
}
δij

+
gs

2

∑
α

〈F̂α〉(F̂α)ij

]
ψj(r, t), (2)

where 〈F̂α〉=
∑

l,m
ψ∗

l (F̂α)lmψm and hi(r)=− h̄2∇2

2m −
µi + V (r) − Ω · (r × p) is one-body Hamiltonian, the

“density” interaction channel gn = 4πh̄2

m
· a0+2a2

3
, the

“spin” interaction channel gs = 4πh̄2

m · a2−a0
3 . The scalar

field V (r) = 1
2
mω2

rr
2 is the external confinement po-

tential such as an optical potential. Here we assume
uniformity along z-axis and take the external rotation
as Ω=Ω · ẑ. The following results are calculated with
the spin interaction gs = −0.02gn and Ω=0.3ωr .

We derive the time-independent GP equation from
Eq.(2), corresponding to the equation of motion for
φj(r) defined as the stationary part of the condensate
wave functions ψj(r, t). The density profiles of the con-
tinuous vortex |φj(r)|2 at M/N =0, 0.5, 1.0 are shown
in Fig.1(a), where the total magnetization is given as
M/N =

∫
dr

∑
j
j|φj|. At M/N = 1, the density pro-

file is completely equivalent to the vortex-free state in
the scalar BEC and the spin moments are polarized.
As the magnetization decreases, the other components
with the winding number grows up in the circumfer-
ence of the spin-1 condensate while the local magneti-
zation in the condensate surface changes continuously
from positive to negative values: the spin direction for
M/N ∼ 0.5 orients horizontally (MH texture) and for
M/N ∼ 0 points down (AT texture). Thus the spin
texture can be controlled by merely changing the total
magnetization. Furthermore, we note that these topo-
logical structures are never stable under no rotaion.

In order to verify the “local” stability, we consider
the equation of motion for the small perturbation:
ψj(r, t) = φj(r) + u(r, j)e−iεqt/h̄ + v∗(r, j)eiεqt/h̄. By
retaining terms up to first order in u(r), v(r), we derive
the Bogoliubov equation, i.e. the equation of motion
for the collective excitations[5]. The appearance of
negative εq implies the local intrinsic instability of the
relevant vortex in the energy landscape.
M -dependence of the negative eigenvalues is shown

in Fig.1(b). There are two anormalous modes with qθ =
−1,−2 under the low rotaion drive where qθ corre-
sponds to the quantum number of the θ-direction. In
M/N =1 case, where the spin moment of the conden-
sate is polarized, both modes corresponds to the spin
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Fig. 1. (a) The density profiles of the condensate at Ω = 0.3

and M = 1.0, 0.5, 0.0. The bold line show the total density∑
|φj|2. (b) The two anormalous modes are plotted as the

function of the total magnetizatoin M/N . (c) The wave func-

tion of the mode with qθ =−1 (left) and qθ =−2 (right). The

bold line corresponds to the wave function of the spin-0 com-

ponent (left), u(r, j = 0), and the spin-−1 component (right),

u(r, j=−1).

wave excitation: the mode with qθ = −1 is the trans-
verse spin wave (TSW) mode and the mode with qθ =
−2 is the longitudinal spin wave (LSW) mode. Here,
as the spin interaction gs/gn increases, the LSW mode
confines to the condensate surface. At M/N ∼ 0.5 sit-
uation with the MH texture, these two modes become
the TSW (LSW) mode localized near the center of the
trap. In M/N < 0.5 region, the negative eigenvalue
appears in qθ = −1, which discribes the instability of
the continuous vortex. As the external rotation Ω in-
creases, the eigenvalue of this anormalous mode shifts
to the positive value and in the wide area of M/N the
continuous vortex has the local stability.
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