

Excess quasiparticles outside the vortex cores in $Y(Ni_{1-x}Pt_x)_2B_2C$

K. Ohishi ^{a,1}, K. Kakuta ^a, J. Akimitsu ^a A. Koda ^b W. Higemoto ^b R. Kadono ^{b,2}
J. E. Sonier ^c A. N. Price ^d R. I. Miller ^d R. F. Kiefl ^d M. Nohara ^e H. Suzuki ^e H. Takagi ^e

^aDepartment of Physics, Aoyama-Gakuin University, Setagaya-ku, Tokyo 157-8572, Japan

^bInstitute of Materials Structure Science, High Energy Accelerator Research Organization (KEK),
Tsukuba, Ibaraki 305-0801, Japan

^cDepartment of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 156

^dTRIUMF and Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

^eGraduate School of Frontier Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

Abstract

The in-plane magnetic penetration depth λ and vortex core radius ρ_v in $Y(Ni_{1-x}Pt_x)_2B_2C$ ($x = 0.0$ and 0.2) have been determined by μ SR. It is demonstrated by the magnetic field dependence of the penetration depth λ that quasiparticle excitations exist not only in the vortex cores but also their outside in both samples.

Key words: penetration depth; vortex core radius; quasiparticle excitations; borocarbide

The physics of flux-line lattice (FLL) phase has been drawing much interest in recent years because the recent studies of the FLL state in presumably conventional *s*-wave superconductors have revealed that the electronic structure of vortices is much more complicated than that of a simple array of rigid cylinders containing normal electrons. One of the unexpected phenomena within this conventional model is the non-linearity in the magnetic field dependence of the Sommerfeld constant $\gamma(H)$ (electronic specific heat coefficient) observed in $CeRu_2$ [1], $NbSe_2$ [2], and YNi_2B_2C [2]. According to the above simple model where the quasiparticle excitations are confined within the cores of vortices (with a radius ξ) in *s*-wave superconductors, one would expect that $\gamma(H)$ is proportional to the number of vortices per unit cell and thus to the applied magnetic field H . However, experi-

ments have revealed that this is not the case for any of the above compounds [1,2]. Instead, they find a field dependence like $\gamma(H) \propto \sqrt{H}$ which is expected for *d*-wave superconductors having more extended quasiparticle excitations along nodes in the energy gap. The recent study on the effect of doping in YNi_2B_2C and $NbSe_2$ indicates that the anomalous field dependence is observed only in the clean limit[2], suggesting the importance of nonlocal effects in understanding the field dependence of $\gamma(H)$. Moreover, it has been reported that the vortex core radius depends on applied magnetic field and shrinks at higher fields in $NbSe_2$ [3] and in $CeRu_2$ [4].

In order to elucidate the structure of the quasiparticle excitations, we have performed μ SR measurements in $Y(Ni_{1-x}Pt_x)_2B_2C$, where the magnetic field dependence of the penetration depth λ , vortex core radius ρ_v and the angle of the FLL θ were measured [6-8]. The single crystals of $Y(Ni_{1-x}Pt_x)_2B_2C$ ($x = 0.0, 0.2$) used in these experiments had surface area of ~ 64 mm². The superconducting transition temperature T_c and the upper critical field $H_{c2}(0)$ determined from resistivity and specific heat measurements were 15.4 K and 8.0 T in $x = 0.0$ sample and 12.1 K and 4.3 T in

¹ Corresponding author. Present address: Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan. E-mail: kazuki.ohishi@kek.jp

² Also at School of Mathematical and Physical Science, The Graduate University for Advanced Studies, Tsukuba, Ibaraki 305-0801, Japan

$x = 0.2$, respectively [2]. μ SR experiments were performed on the M15 and M20 surface muon beamlines at TRIUMF.

The analysis based on the London model with non-local corrections [5] in $\text{YNi}_2\text{B}_2\text{C}$ shows that the FLL has changed from hexagonal to square with increasing magnetic field H , and the magnetic penetration depth λ increases linearly in H [7]. At low fields the vortex core radius $\rho_v(H)$ decreases with increasing H much steeper than what is expected from the \sqrt{H} behavior of the Sommerfeld constant $\gamma(H)$, strongly suggesting that the anomaly in $\gamma(H)$ primarily arises from the quasiparticle excitations outside the vortex cores [7]. On the other hand, λ in $\text{Y}(\text{Ni}_{1-x}\text{Pt}_x)_2\text{B}_2\text{C}$ ($x = 0.2$) behaves as a constant under $H \leq 0.4H_{c2}$, suggesting that the superconducting gap is effectively isotropic, while ρ_v decreases with increasing H [8].

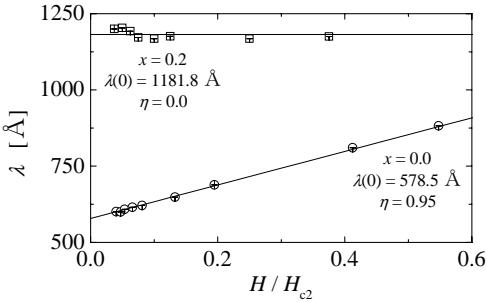


Fig. 1. The H/H_{c2} dependence of the λ in $\text{Y}(\text{Ni}_{1-x}\text{Pt}_x)_2\text{B}_2\text{C}$. Solid lines are fitting results by Eq. (1).

Fig. 1 shows the magnetic penetration depth λ in $\text{Y}(\text{Ni}_{1-x}\text{Pt}_x)_2\text{B}_2\text{C}$ ($x = 0.0$ and 0.2) versus normalized external field. A fit to the relation

$$\lambda(h) = \lambda(0)[1 + \eta h] \quad (h = H/H_{c2}) \quad (1)$$

provides a dimensionless parameter η that represents the strength of the pair-breaking effect. We obtain $\eta = 0.95(1)$ with $\lambda(0) = 578.5(2.0)$ Å and $\eta = 0.0$ with $\lambda(0) = 1181.8(5.1)$ Å in clean sample ($x = 0.0$) and dirty ($x = 0.2$), respectively. We expect the conventional s -wave superconductors to be $\eta = 0.0$ because quasiparticles exist only within the vortex cores. The H -linear behavior of λ in clean sample suggests the presence of excess quasiparticle excitations outside the vortex cores. On the other hand, λ in the dirty sample does not depend on H , taking a value about 1182 Å. The disappearance of the field dependence in λ can be ascribed to that of the gap anisotropy as inferred from the photoelectron result [9]. However, the value of $\lambda(0)$ in dirty sample is considerably larger than that in the clean sample. The enhancement of λ due to impurity effect is evaluated by the following equation,

$$\lambda_{\text{eff}}(l, T) = \lambda_L(T) \left(\frac{\xi_0}{\xi} \right)^{1/2} = \lambda_L(T) \left(1 + \frac{\xi_0}{l} \right)^{1/2}, \quad (2)$$

where λ_L is the London penetration depth. The estimated effective penetration depth λ_{eff} is

$$\lambda_{\text{eff}} = 1.612 \times \lambda_{x=0}. \quad (3)$$

Using the above Eq. (3), the λ_{eff} is deduced to be 932.5 Å which is about 0.79 times smaller than λ in the dirty sample, suggesting that the enhancement is explained not only by impurity effect but also by the existence of quasiparticles outside the vortex cores. In contrast to λ , ρ_v decreases with increasing H in both samples. The difference in the field dependence of ρ_v between that deduced from μ SR and from specific heat in clean sample [2] is again explained by the predominant contribution of quasiparticle excitations outside the vortex cores for the specific heat measurement. A similar situation is suggested in dirty sample by the extremely large value of $\lambda(0)$ in $x = 0.2$ compared with that in $x = 0.0$. In this way, our study has revealed that the anomalies of the quasiparticle excitations in $\text{Y}(\text{Ni}_{1-x}\text{Pt}_x)_2\text{B}_2\text{C}$ ($x = 0.0, 0.2$) are related with the anisotropic order parameters.

In conclusion, we have found that the superconducting gap has changed from anisotropic to effectively isotropic one upon doping of Pt. However, λ in the sample with $x = 0.2$ is about 1.27 times larger than that estimated by impurity effect, suggesting that the quasiparticles also exist not only inside the vortex cores but outside like $\text{YNi}_2\text{B}_2\text{C}$.

We thank the TRIUMF μ SR staff for technical support. This work was partially supported by a JSPS Research Fellowships for Young Scientists, Japan, by a Grant-in-Aid for Science Research on Priority Areas from the Ministry of Education, Culture, Sports, Science, and Technology, Japan and also by a Grant from the CREST, JST, Japan.

References

- [1] M. Hedo, et al., J. Phys. Soc. Jpn. 67 (1998) 272.
- [2] M. Nohara, et al., J. Phys. Soc. Jpn. 68 (1999) 1078.
- [3] J.E. Sonier, et al., Phys. Rev. Lett. 79 (1997) 1742.
- [4] R. Kadono, et al., Phys. Rev. B 63 (2001) 224520.
- [5] V.G. Kogan, et al., Phys. Rev. B 55 (1997) R8693.
- [6] K. Ohishi, et al., Physica B 289-290(2000) 377.
- [7] K. Ohishi, et al., Phys. Rev. B 65 (2002) 140505.
- [8] K. Ohishi, et al., to be published.
- [9] T. Yokoya, et al., Phys. Rev. Lett. 85 (2000) 4952.