

Ni impurity spin fluctuations in $\text{YBa}_2(\text{Cu}_{1-x}\text{Ni}_x)_4\text{O}_8$ and $\text{YBa}_2(\text{Cu}_{1-x}\text{Ni}_x)_3\text{O}_{6.92}$ via Cu NQR

Y. Itoh ^{a,1}, T. Machi ^b, N. Watanabe ^b, S. Adachi ^b, N. Koshizuka ^b

^aSuperconductivity Research Laboratory, International Superconductivity Technology Center, and Japan Society for the Promotion of Science, Japan

^bSuperconductivity Research Laboratory, International Superconductivity Technology Center, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062, Japan

Abstract

We report a Cu NQR study of Ni impurity spin fluctuations in high T_c cuprate superconductors, $\text{YBa}_2(\text{Cu}_{1-x}\text{Ni}_x)_4\text{O}_8$ and $\text{YBa}_2(\text{Cu}_{1-x}\text{Ni}_x)_3\text{O}_{6.92}$, from measurement of Ni-induced Cu nuclear spin-lattice relaxation times. We found that the temperature dependence of the Ni spin correlation time is different from that of Kondo impurity in a conventional metal, e.g. Mn or Fe in Cu.

Key words: magnetic impurity Ni effect; nuclear quadrupole resonance; $\text{YBa}_2\text{Cu}_4\text{O}_8$; $\text{YBa}_2\text{Cu}_3\text{O}_7$

1. Introduction

Magnetic impurity Ni can be a probe to detect strong correlation effect on high- T_c cuprate superconductors, because the superconducting transition temperature T_c is suppressed but the host Cu electron spin dynamics on the CuO_2 plane is robust to Ni doping [1,2]. Here, we discuss the temperature (T) dependence of Ni spin fluctuations in carrier-underdoped $\text{YBa}_2(\text{Cu}_{1-x}\text{Ni}_x)_4\text{O}_8$ [1] and in optimally doped $\text{YBa}_2(\text{Cu}_{1-x}\text{Ni}_x)_3\text{O}_{6.92}$ [3] through Ni-induced Cu nuclear spin-lattice relaxation time τ_1 . The Ni impurity density x is estimated by inductively coupled plasma atomic emission spectroscopy.

The Ni-induced nuclear spin relaxation rate $1/\tau_1$ is expressed by

$$1/\tau_1 \propto c^2 T \frac{\partial B_S(x)}{\partial x} \frac{\Gamma(T)}{\omega_n^2 + \Gamma(T)^2}, \quad (1)$$

where the number density of impurity c , $x = g\mu_B S H/k_B T$, the Brillouin function $B_S(x)$, an NQR frequency ω_n , and the Ni spin fluctuation frequency $\Gamma(T)$ (the notations of g , μ_B , S , H , and k_B conform to [4]). At moderately high temperatures ($\omega_n \ll \Gamma(T)$) and in the zero-field limit, one obtains $\Gamma(T) \propto \tau_1 c^2$. Thus, the Ni impurity relaxation rate $\Gamma(T)$ is proportional to the Ni-induced Cu nuclear relaxation time τ_1 .

2. Ni(1)

Figure 1(a) shows Ni-doping effect on the $^{63}\text{Cu}(1)$ nuclear spin-lattice relaxation curve in $\text{YBa}_2(\text{Cu}_{1-x}\text{Ni}_x)_4\text{O}_8$ at $T=90$ K. Obviously, the $^{63}\text{Cu}(1)$ nuclear magnetization $M(t)$ relaxes more quickly with Ni doping. The recovery curve of $^{63}\text{Cu}(1)$ is changed from a single exponential curve in pure $\text{YBa}_2\text{Cu}_4\text{O}_8$ to nonexponential ones with Ni doping.

Figure 1(b) shows T dependence of the Ni-induced $^{63}\text{Cu}(1)$ nuclear spin-lattice relaxation rate $1/\tau_1$ estimated in the same way as in Ref. [1]. The magnitude of $1/\tau_1$ increases with Ni. Thus, a part of Ni impurities

¹ Corresponding author. Present address: Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062, Japan. E-mail: itoh@istec.or.jp

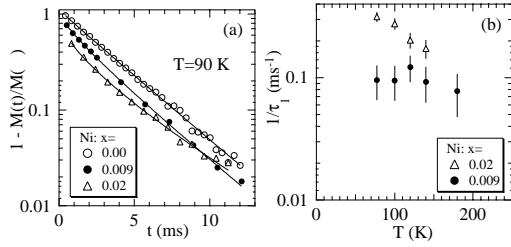


Fig. 1. (a) Ni-doping effect on the recovery curve of the chain-site $^{63}\text{Cu}(1)$ nuclear spin-echo intensity $M(t)$ (t is a time after an inversion pulse) in $\text{YBa}_2(\text{Cu}_{1-x}\text{Ni}_x)_4\text{O}_8$ at $T=90$ K. The solid curves are the least-squares fitting results using a stretched exponential function in [1]. (b) T dependence of the estimated Ni(1)-induced $^{63}\text{Cu}(1)$ nuclear relaxation rate $1/\tau_1$.

is substituted for the chain site Cu(1).

3. Ni(2)

Figure 2(a) shows T dependence of $\tau_1 c^2$ of Ni(2)-induced $^{63}\text{Cu}(2)$ nuclear spin-lattice relaxation time in $\text{YBa}_2(\text{Cu}_{1-x}\text{Ni}_x)_4\text{O}_8$ with $x=0.03$ ($T_c=15$ K) and 0.042 (<4.2 K) [1]. Here, we assume equal occupation of Ni at Cu(1) and Cu(2) sites, i.e. $c=x$. The T dependent $\tau_1 c^2$ lies on nearly the same curve. A higher power law of T more than Korringa law is observed. Figure 2(b) shows $\tau_1 c^2$ of $^{63}\text{Cu}(2)$ as a function of T in $\text{YBa}_2(\text{Cu}_{1-x}\text{Ni}_x)_3\text{O}_{6.92}$ with $x=0.033$, which also rapidly increases with T .

In Fig. 2(c), for comparison, the T dependence of magnetic relaxation rate of Kondo impurity in CuMn and CuFe is reproduced from Ref. [5]. At high temperatures, Korringa relaxation is predominant, whereas at low temperatures Kondo screening effect causes \sqrt{T} and a constant behavior. Thus, the T dependence of Ni relaxation rate Γ in the high- T_c cuprate superconductors is different from that of magnetic impurity in a conventional metal. The T dependence of Ni impurity relaxation rate Γ is novel. For a paramagnetic impurity in a conventional metal, the T dependence of the impurity relaxation results from an impurity spin-lattice relaxation. Non-Korringa T dependence of the nuclear spin-lattice relaxation due to antiferromagnetic correlation [6,7] and underscreening Kondo effect [8] may account for such a novel T dependence of Γ .

Acknowledgements

This work was supported by NEDO.

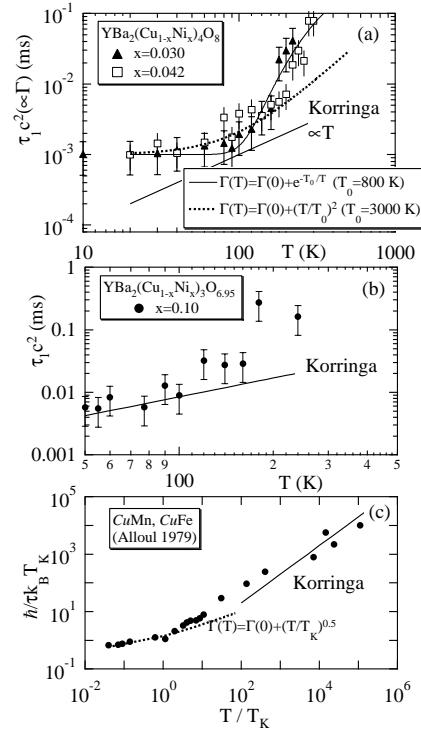


Fig. 2. (a) T dependence of $\tau_1 c^2$ of Ni-induced Cu(2) nuclear spin-lattice relaxation time in $\text{YBa}_2(\text{Cu}_{1-x}\text{Ni}_x)_4\text{O}_8$ [1]. Non Korringa (solid line) nor \sqrt{T} behavior is seen. Rather, a higher power law of T is seen, e.g. T^2 (dashed curve). The solid curve is an activation type function. (b) T dependence of $\tau_1 c^2$ of Ni-induced Cu(2) nuclear spin-lattice relaxation time in $\text{YBa}_2(\text{Cu}_{1-x}\text{Ni}_x)_3\text{O}_{6.92}$ ($T_c \sim 70$ K) with $c=x=0.033$ [3]. (c) T dependence of the magnetic relaxation rate of Kondo impurity in CuMn and CuFe , reproduced from Ref. [5]. T_K is the Kondo temperature. One should note $1/\tau \equiv 2\pi\Gamma$.

References

- [1] Y. Itoh et al., J. Phys. Soc. Jpn. **68** (1999) 2914, *ibid* **70** (2001) 1881, Physica C **357-360** (2001) 69.
- [2] J. Bobroff et al., Phys. Rev. Lett. **B79** (1997) 2117.
- [3] Y. Itoh et al., cond-mat/0206199.
- [4] M. R. McHenry, B. G. Silbernagel, J. H. Wernick, Phys. Rev. Lett. **27** (1971) 426.
- [5] H. Alloul, F. Hippert, H. Ishi, J. Phys. F: Metal Phys. **9** (1979) 725.
- [6] M. Mali et al., Phys. Lett. **A124** (1987) 112.
- [7] T. Imai et al., J. Phys. Soc. Jpn. **57** (1988) 2280.
- [8] H. Kusunose, K. Miyake, J. Phys. Soc. Jpn. **66** (1997) 1180.