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Abstract

We report a Cu NQR study of Ni impurity spin fluctuations in high T cuprate superconductors, YBaz (Cui—;Ni;)4Os
and YBaz(Cui_4Ni;)306.92, from measurement of Ni-induced Cu nuclear spin-lattice relaxation times. We found
that the temperature dependence of the Ni spin correlation time is different from that of Kondo impurity in a

conventional metal, e.g. Mn or Fe in Cu.
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1. Introduction

Magnetic impurity Ni can be a probe to detect
strong correlation effect on high-7. cuprate super-
conductors, because the superconducting transition
temperature 7 is suppressed but the host Cu elec-
tron spin dynamics on the CuQO; plane is robust to
Ni doping [1,2]. Here, we discuss the temperature
(T') dependence of Ni spin fluctuations in carrier-
underdoped YBap(Cu1—5Niz)4Os [1] and in optimally
doped YBas(Cuy—;Niz)306.92 [3] through Ni-induced
Cu nuclear spin-lattice relaxation time 71. The Ni im-
purity density z is estimated by inductively coupled
plasma atomic emission spectroscopy.

The Ni-induced nuclear spin relaxation rate 1/7 is
expressed by

8Bs(z) T(T)
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where the number density of impurity ¢, t=gus SH/ksT,
the Brillouin function Bs(z), an NQR frequency wn,
and the Ni spin fluctuation frequency I'(T) (the no-
tations of g, us, S, H, and kg conform to [4]). At
moderately high temperatures (wn < I'(T)) and in
the zero-field limit, one obtains I'(T") « 7ic®. Thus,
the Ni impurity relaxation rate I'(T) is proportional
to the Ni-induced Cu nuclear relaxation time 7.

2. Ni(1)

Figure 1(a) shows Ni-doping effect on the ®*Cu(1)

nuclear spin-lattice relaxation curve in YBap(Cu1—»Niz)4Os

at T=90 K. Obviously, the %*Cu(1) nuclear magneti-
zation M (t) relaxes more quickly with Ni doping.The
recovery curve of ®*Cu(1) is changed from a single
exponential curve in pure YBapCusOg to nonexpo-
nential ones with Ni doping.

Figure 1(b) shows T dependence of the Ni-induced
53Cu(1) nuclear spin-lattice relaxation rate 1/71 esti-
mated in the same way as in Ref. [1]. The magnitude
of 1/71 increases with Ni. Thus, a part of Ni impurities
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Fig. 1. (a) Ni-doping effect on the recovery curve of the
chain-site %3Cu(1) nuclear spin-echo intensity M (t) (¢ is a time
after an inversion pulse) in YBas(Cui_,Niz)4Os at T=90 K.
The solid curves are the least-squares fitting results using a
stretched exponential function in [1]. (b) T dependence of the
estimated Ni(1)-induced %3 Cu(1) nuclear relaxation rate 1/71.

is substituted for the chain site Cu(1).

3. Ni(2)

Figure 2(a) shows T dependence of mc? of Ni(2)-
induced ®3*Cu(2) nuclear spin-lattice relaxation time
in YBay(Cu1—2Niz)4O0s with 2=0.03 (T.=15 K) and
0.042 (<4.2 K) [1]. Here, we assume equal occupation
of Ni at Cu(1) and Cu(2) sites, i.e. c=x. The T de-
pendent 71¢? lies on nearly the same curve. A higher
power law of T" more than Korringa law is observed.
Figure 2(b) shows 1ic? of %3Cu(2) as a function of T
in YBag(Cui—4Niz)306.92 with 2=0.033, which also
rapidly increases with T

In Fig. 2(c), for comparison, the T' dependence of
magnetic relaxation rate of Kondo impurity in CuMn
and CuFe is reproduced from Ref. [5]. At high temper-
atures, Korringa relaxation is predominant, whereas
at low temperatures Kondo screening effect causes v/T
and a constant behavior. Thus, the 7" dependence of
Ni relaxation rate I' in the high-T; cuprate supercon-
ductors is different from that of magnetic impurity in a
conventional metal. The T' dependence of Ni impurity
relaxation rate I" is novel. For a paramagnetic impurity
in a conventional metal, the T" dependence of the im-
purity relaxation results from an impurity spin-lattice
relaxation. Non-Korringa 7' dependence of the nuclear
spin-lattice relaxation due to antiferromagnetic corre-
lation [6,7] and underscreening Kondo effect [8] may
account for such a novel T dependence of T'.
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Fig. 2. (a) T dependence of 71¢? of Ni-induced Cu(2) nuclear
spin-lattice relaxation time in YBag(Cuj_;Nigz)4Os [1]. Non
Korringa (solid line) nor VT behavior is seen. Rather, a higher
power law of T is seen, e.g. T2 (dashed curve). The solid
curve is an activation type function. (b) T' dependence of 7 c?
of Ni-induced Cu(2) nuclear spin-lattice relaxation time in
YBas(Cuy— »Nig)30¢.02 (Ten70 K) with c=2=0.033 [3]. (c) T
dependence of the magnetic relaxation rate of Kondo impurity
in CuMn and CuFe, reproduced from Ref. [5]. Tk is the Kondo
temperature. One should note 1/7 = 27T
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