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Abstract

The geometrical properties of thermally-excited vortex loops near a superfluid phase transition are deduced from
an analytic vortex-renormalization theory. The fractal Hausdorff dimension of the loops is DH = 2.5, and the
corresponding ’anomalous’ dimensionality exponent is ηφ = -0.5. As the temperature is increased towards Tc the
density distribution of loops of average diameter a crosses over from exponential to algebraic decay in the loop
diameter. Just at Tc the distribution falls off algebraically as a−λ, where λ = D+1 = 4.0, in exact agreement with
a cosmic-string prediction of Vachaspati and Vilenkin.
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The initial proposal that percolating vortex loops
are the relevant thermal excitations of superfluid phase
transitions [1] has now been verified in detail by Monte
Carlo simulations [2]. An analytic theory employing
vortex-loop renormalization methods has been formu-
lated that provides an accurate description of the su-
perfluid transition [3–6]. We examine here the geome-
try of the thermally-excited loops in this theory, and
show that the loop diameter distribution is in exact
agreement with a cosmic-string proposal of Vachaspati
and Vilenkin [7].

1. Loop theory

The loop theory is quite simple, consisting of a re-
cursion relation for the renormalized superfluid den-
sity Kr = h̄2ρsao/m2kBT where m is the helium atom
mass and ao the bare core diameter,
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Here we have generalized the similar Eq. 1 of Ref. [6]
to arbitrary dimension D, where a is the average loop
diameter and Ko the initial bare superfluid density at
the scale ao. The renormalized loop energy is given by
a second recursion relation
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where C is a nonuniversal constant. For the superfluid
λ-transition it is found [5] that C=1.03 and ao=2.53 Å.
The effective core size ac was found in a Flory-scaling
entropy-energy minimization calculation [8] to be
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and from the same calculation the total perimeter of a
loop of average diameter a is given by
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where the B is a constant of order unity [6]. The first
equality in Eq. 4 has now been confirmed from gen-
eral considerations of the random walk of a loop [9,10],
defining the Hausdorff fractal dimension of the walk,
DH = 1/δ. For D = 3 the Flory-scaling result is δ = 0.4
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and hence DH = 2.5. Associated with this fractal di-
mension is the ”anomalous” dimensionality exponent
[9] ηφ = DH -D = -0.5. Previous estimates of this ex-
ponent have ranged from -0.2 [11] to -0.38 [9] to -0.79
[12].

2. Loop diameter distribution

The number of loops per unit volume with diameter
between a and a+da is given by [6]
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where L is the system size. At low temperatures U ∼ a
and the distribution falls off exponentially in a. As Tc is
approached however this changes to an algebraic decay
in a. This is a consequence of a universality condition in
the solutions of Eqs. 1 and 2 which is the 3D equivalent
of the universal jump of the superfluid density in the 2D
Kosterlitz-Thouless theory: at Tc the scale-dependent
superfluid density varies as
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where Do = 0.3875... is a universal constant [4,6]. Dif-
ferentiating Eq. 1 and inserting the above relation for
Kr gives
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Equation 5 then reduces to algebraic decay,
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where the exponent λ = D+1 = 4.0. This is exactly
the prediction of Vachaspati and Vilenkin [7] for cos-
mic loops at Tc, which is based on the concept of scale
invariance at the transition point. The prefactor Eo =
3/(8π2Do) is a universal constant. Figure 1 displays
numerical solutions of Eqs. 1, 2, and 5 at various tem-
peratures showing the details of the crossover from ex-
ponential to algebraic decay at the transition as Eq. 6
remains valid to longer and longer length scales.

Monte Carlo simulations for the distribution of loop
diameters have recently been carried out [13] which
also observe the crossover from exponential to alge-
braic decay. However, the exponent at Tc was found to
be λ = 4.16, significantly higher than the exact value
of 4.0. Olsson [12] has noted a problem that arises from
the finite lattice used in the simulations, which cannot

Fig. 1. Distribution of vortex loops as a function of their av-

erage diameter for several temperatures approaching Tc.

distinguish two loops approaching closer than a lattice
constant from a single larger loop. This skews the dis-
tribution, giving rise to the higher exponent.

A similar crossover from exponential to algebraic de-
cay was calculated [6] for the distribution of loops with
total perimeter length p, where it was found at Tc that
D(p) ∼ (p/ao)−γ , with γ = Dδ+1 (Ref. [6] assumed D
= 3). This relation between γ and δ has recently been
confirmed in Ref. [9]. Values of δ can thus be extracted
from the simulation distributions: δ = 0.41 [14] and δ
= 0.43 [9]. Since as shown above these will be slightly
too high due to the skewed distributions, they confirm
very well the Flory-scaling result of Eq. 4.
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