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Abstract

We consider Kondo impurity systems with multiple local orbitals, such as rare earth ions in a metallic host or
multi–level quantum dots coupled to metallic leads. It is shown that the multiplet structure of the local orbitals
leads to multiple Kondo peaks above the Fermi energy EF , each one with its own Kondo temperature TK , and
to “shadow” peaks below EF . We use a slave boson mean field (MF) theory, which recovers the strong coupling
Fermi liquid fixed point, to calculate the Kondo peak positions, widths, and heights analytically at T = 0, and
NCA calculations to fit the temperature dependence of high–resolution photoemission spectra of Ce compounds. In
addition, an approximate conductance quantization for transport through multi–level quantum dots or single–atom
transistors in the Kondo regime due to a generalized Friedel sum rule is demonstrated.
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1. Introduction

In realistic Kondo impurity systems [1] the local
magnetic moment is often distributued over several lo-
cal orbitals. For example, in rare earth ions, embedded
in a metallic host, the local moment is carried by the
seven 4f orbitals whose degeneracy is lifted by spin–
orbit (SO) and crystal field (CF) splitting. Small quan-
tum dots (Qdot) containing few electrons are in gen-
eral comprised of several single-particle levels and can
be seen as artificial atoms. Such systems, coupled to
metallic leads, can be tuned to the Kondo regime as
well, if the Coulomb blockade is large enough to fix the
electron number on the Qdot to an odd number and,
hence, the effective dot spin to 1/2. In rare–earth sys-
tems Kondo resonances have recently been observed
by high–resolution photoemission spectroscopy [2,3],
while the advances in nanotechnology have made it
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possible to perform direct tunneling spectroscopy of
the Kondo resonance in Qdots [4–6].

In this contribution we show that each of the
low–lying single–particle orbitals generates a many–
particle Kondo resonance near the Fermi energy EF ,
and we calculate their positions, widths and heights
at temperature T = 0. The results of a Non–Crossing
Approximation (NCA) calculation at finite T are
compared to high–resolution photoemission spectra
of the rare–earth Kondo system CeSi2. Moreover,
an approximate conductance quantization in multi–
orbital Kondo Qdots is predicted originating from a
generalized Friedel sum rule [7].

The systems discussed above can be described by the
multi–orbital Anderson impurity Hamiltonian

H = Hkin +
∑
mσ

εdmd†
mσdmσ +

∑
pmσ

[Vmpd†
mσcpσ + h.c.]

+
U

2

∑
(mσ) �=(m′σ′)

d†
mσdmσ d†

m′σ′dm′σ′ , (1)
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where Hkin =
∑

pσ
εpc

†
pσcpσ describes the conduc-

tion electron band, and d†mσ, creates an electron with
spin σ in the low–lying single–particle level εdm < 0,
m = 0, . . . , M − 1, with εd0 the (noninteracting)
ground state. Electrons in any of the local orbitals
have a Coulomb repulsion U and are coupled to
the conduction band via the hybridization matrix
elements Vmp. For later use we indroduce the effec-
tive couplings Γmm′ = π

∑
p
VmpV ∗

pm′Apσ(0), with

Apσ(ω) the conduction electron spectral function and
N(ω) =

∑
p

Apσ(ω) the density of states per spin. In
the following we will assume the system to be in the
Kondo regime, Γmm/|εdm| � 1, U → ∞, and for the
expansions leading to Eqs. (7), (11), and (13) below,
Γmm/(εdm − εd0) � 1.

2. Spectral features

In 2nd order perturbation theory, the spin scatter-
ing amplitude of the local spin shows log divergences at
the energies (εdm − εd0) � |εd0| (*) and −(εdm − εd0)
(**). These instabilities can be understood as due to
spin fluctuations involving a transition of the local elec-
tron from the ground state εd0 to an excited state εdm

(m > 0) (*) or vice versa (**) [3,8]. The positions of
these resonances at T = 0 can be estimated analyt-
ically from a slave boson MF theory [9] for Eq. (1),
since this approach recovers the strong coupling Fermi
liquid fixed point [1] of the model.

In order to implement the effective restriction of no
double occupancy of all orbitals, enforced by the strong
Coulomb repulsion U , the local electron operator is
represented in terms of pseudofermions fmσ and slave
bosons b as d†mσ = f †

mσb, with the operator constraint
Q̂ :=

∑
mσ

f †
mσfmσ + b†b ≡ 1. In a functional integral

approach, the latter is imposed by the functional Kro-
necker delta

∆(Q − 1) =

πT∫
−πT

dλ

2πT
e−iβλ(Q−1) . (2)

Introducing mean field and fluctuating parts r, a for
the Bose field, b = r + a, b† = r + a† and λ0, λ̃ for the
constraint field, λ = −iλ0 + λ̃, Eq. (1) with Eq. (2)
takes the form

H = Hkin +
∑
mσ

ε̃dmf †
mσfmσ +

∑
pmσ

[Ṽmpf †
mσcpσ + h.c.]

+ (ε̃d0 − εd0)[r
2 + a†a − 1] + Hint (3)

with

Hint =
∑
pmσ

[Vmpaf†
mσcpσ + h.c.] + (ε̃d0 − εd0)r[a

† + a]

f

c

r 2

a

f
+

f
a) b)

Fig. 1. Diagrammatic representation of a) the fluctuating Bose

selfenergy and b) the local physical electron Green’s function.

The solid circle represents the modulus squared of the boson

MF.

+ λ̃
[
a†a + r2 + r(a† + a) +

∑
mσ

f †
mσfmσ − 1

]
.(4)

Here we have defined renormalized local levels ε̃dm such
that λ0 = ε̃d0 − εd0 and ε̃dm = εdm + λ0 and effective
hybridizations Ṽmp = rVmp, Γ̃mm = r2Γmm. The mean
field solutions r, ε̃d0 are then obtained by minimizing
the free energy, which is equivalent to setting the terms
linear in the fluctuating fields a, a†, λ̃ equal to zero,

r2 + 〈a†a〉 +
∑
mσ

〈f †
mσfmσ〉 − 1 = 0 (5)

(ε̃d0 − εd0)r +
∑
pmσ

Vmp〈f †
mσcpσ〉 = 0 . (6)

The expectation values in Eqs. (5), (6) are calculated
from the Fourier components of the pseudofermion,
the mixed fermion–conduction electron, and the
fluctuating boson Green’s functions Gf mm′σ(t) =

−i〈T̂ fmσ(t)f †
m′σ(0)〉, Gcf pmσ(t) = −i〈T̂ cpσ(t)f †

mσ(0)〉,
Ga(t) = −i〈T̂ a (t)a†(0)〉. Calculating the f selfener-
gies for a flat band and keeping only the leading terms
in the effective hybridizations, they are [8,10],

Gf mmσ(iω) =
[
iω − ε̃dm − iΓ̃mm

]−1
(7)

Gcf pmσ(iω) = Ṽ ∗
mp Gcpσ(iω) Gf mmσ(iω) (8)

Ga(iν) =
[
iν − (ε̃d0 − εd0) − Σa(iν)

]−1
. (9)

As seen from Eq. (15) below, the low-energy peak in
each of the pseudofermion spectral functions Gf mm is
carried over to a quasiparticle peak in the physical im-
purity electron spectral function, i.e. to a Kondo res-
onance. Hence, the width Γ̃mm of Gf mm defines the
Kondo temperature of the mth Kondo peak, Γ̃mm =
TK m. It is to be determined from the MF solution be-
low. The selfenergy of the fluctuating Bose field ap-
pearing in Eq. (5) is given by (Fig. 1 a)),

Im Σa(ω − i0) = (10)

2

π

∑
m

Γmm

[
arctan

(
ω − ε̃dm

TK m

)
+ arctan

(
ε̃dm

TK m

)]
.

It is worth noting that Eq. (5) just represents the
Friedel sum rule, when the expectation value 〈a†a〉 of
the fluctuating boson density is included [8,10]. There-
fore, it describes the correct shift of the Kondo reso-
nances w.r.t. EF due to potential scattering. We now
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Fig. 2. local electron spectrum of the Hamiltonian Eq. (1),

NCA calculation, M = 3. εd0,1,2 = −0.95D,−0.6D,−0.4D,

Γ00 = Γ11 = Γ22 = 0.2D; TK0 = 3 · 10−3D; T = 5 · 10−5D;

D=half band width.

use the relations ε̃d0 < TK 0 and ε̃dm > TK m, m =
1, . . . , M − 1, where the former will be justified below
by the MF solution in the Kondo regime, and the latter
is true for sufficiently large splitting of the local levels.
The positions and the widths of the Kondo peaks are
then obtained from Eq. (6) and Eq. (5), respectively, as

ε̃d0 =
Γ00

−πεd0

(
1 +

M−1∑
m=1

−2εd0 TK m

Γ00(εdm − εd0)

)
TK 0 (11)

ε̃dm = ε̃d0 + (εdm − εd0) (12)

TK 0 =

M−1∏
m=1

( D

εdm − εd0

)Γmm
Γ00 D e

− π|εd0|
2Γ00 (13)

TK m =
Γmm

Γ00
TK 0 (14)

Finally, we obtain the physical electron Green’s func-
tion by evaluating the diagrams shown in Fig. 1b). At
T = 0 its imaginary part reads

Adσ (ω) �
∑
m

TK m

Γmm
ImGf mmσ(ω − i0)

−[
Θ(ε̃d0 − ω) − 1

2

]
Im

[
−ω + ε̃d0 + εd0 (15)

−
∑

m

Γmm

π
ln

(ω + ε̃dm − ε̃d0)
2 + T 2

K m

ε̃2
dm + T 2

K m

−iImΣa(ω − i0) − i sgnω TK 0

]−1

.

It is seen that the first line of Eq. (15) represents mul-
tiple Kondo resonances above EF with the positions,
widths, and heights given by Eqs. (11)–(14). The re-
mainder of Eq. (15) describes the structure below EF .
The single–particle resonance (εd0) is strongly renor-
malized downward due to the logarithmic terms. The
maxima of the log terms indicate weak peaks or often
merely shoulders at energies

ε̃′dm = −(ε̃dm − ε̃d0) , (16)

i.e. at mirrorimaged positions w.r.t. ε̃d0. In contrast to
the resonances above EF , these mirrored peaks do not
correspond to quasiparticle resonances, since there is
no pole in Adσ at these energies. Physically, they orig-
inate from spin fluctuations involving a virtual transi-
tion from an excited state (m ≥ 1) to the ground state
(m = 0). This is only a virtual process, as the m ≥ 1
states are not thermally occupied at T = 0 [8]. With
increasing T , 0 < T < TK m, the peaks below EF grow,
as the m ≥ 1 states become thermally occupied. The
multiple peak structure discussed above is shown in
Fig. 2. Fig. 3 shows fits of the NCA calculation of Ad

to photoemission spectra of the Kondo system CeSi2
(M = 7) [11]. The experimental data show the ap-
pearance of low–energy peaks above EF at elevated T ,
in quantitative agreement with the T dependence ex-
pected theoretically from multiple Kondo resonances.
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Fig. 3. Low-energy high resolution photoemission spectra of

CeSi2 . Open circles: Experiment; solid lines: NCA. Model pa-

rameters determined from fits to the theory: εd0=-1.35 eV, SO

splitting: 270 meV, CF splitting: 25 meV (lower quartet), 48

meV (upper sextet); D = 3.7 eV; TK0 ≈ 35 K. The inset shows

raw data before division by the Fermi-Dirac distribution [3].

3. Approximate conductance quantization

We now show that in a symmetrical multi–level Qdot
or a single–atom transistor (SAT) [12] at low T the
linear response conductance G = dI/dV(V = 0) is
approximately quantized at 2e2/h [7], if the Qdot or
SAT is in the Kondo regime, even though there may be
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several transmission channels, m = 0, . . . ,M − 1, and
the lead–to–dot coupling matrix elements Vmp are ran-
dom. Such systems are described by the Hamiltonian
Eq. (1), where, in addition, the conduction electron op-
erators carry an index α = L,R indicating the left or
right lead, and, hence the kinetic energy term reads,
Hkin =

∑
pσα

[εp − µα]c†pσαcpσα, with µL/R = 0, V the

chemical potentials in the left/right lead.
The current through a left/right symmetrical device

is [13]

I =
e

h

∑
σ

∫
dω

[
f(ω) − f(ω +

eV

h̄
)
]
Im tr [ΓGdσ(ω)],

(17)

where Gdσ is the advanced local-orbital Green’s func-
tion and Γ the lead–dot couplings ΓL

mm′ + ΓR
mm′ . Gdσ

and Γ are matrices in the space of local orbitals,[
G−1

d

]
mmσ

(ω) = ω − εd,1 − iΓmm − Σmm(ω) (18)[
G−1

d

]
mm′σ (ω) = −iΓmm′ m 	= m′ , (19)

where Σmm(ω) is the selfenergy due to intra–dot inter-
actions. Since the ground state is a spin singlet [1], the
quantum dot is at T � TK ≡ min[TK m] a pure poten-
tial scatterer for electrons traversing the system, and
the following Fermi liquid relations hold [14],

Σ′′
m(ω) =

(h̄ω)2 + (πkBT )2

kBTK
ω, T < TK (20)

0∫
−∞

dω tr
{

∂Σ(ω)

∂ω
· Gdσ(ω)

}
= 0 (21)

The averaged electron number in the dot per spin,
nd,σ, can now be evaluated using the general relation
d

dω
ln(Gd

−1) = (1− dΣ
dω

) ·Gd and the Luttinger theorem
Eq. (21),

ndσ = Im

0∫
−∞

dω

π
tr Gdσ(ω) =

Im

π

[
tr{ln Gdσ(ω)−1}

]0

−∞

This is a statement of the Friedel sum rule ndσ =
1
π

∑
m

δmσ(0), since the scattering phase shift at the
Fermi level in channel m is δmσ(0) = arg[Γ·Gdσ(0)]mm.
It may be re-expressed, using tr ln Gdσ

−1 =
ln det Gdσ

−1, as

ndσ =
1

π
arccot

[
Re det Gdσ(0)−1

Im det Gdσ(0)−1

]
. (22)

The scattering T-matrix of the device, Γ · Gdσ, which
determines the conductance G = dI/dV of the system
via Eq. (17), is now evaluated by expressing the inverse

matrix Eqs. (18), (19) in terms of its determinant, and,
using the Fermi liquid property Eq. (20), we obtain at
the Fermi energy (ω = 0, T � TK) for M = 2,

Im tr (Γ · Gσ(0)) = sin2(πndσ) (23)

+sin(2πndσ)
Γ21Γ12 − Γ11Γ22

Γ11(εd,2 + Σ′
2(0)) + Γ22(εd,1 + Σ′

1(0))
.

If the transition amplitudes Vmp are independent of the
lead channels p, it follows directly from the definition
of Γmm′ that the term ∝ sin(2πndσ) cancels. Eq. (23) is
an exact result, valid for arbitrary microscopic param-
eters Γmm′ , εdm, U , and ndσ. It is the generalization of
the well-known unitarity rule of the single-level Ander-
son impurity problem to the case of several impurity
levels [7]. If there is at least one of the local levels sig-
nificantly below the Fermi level (εd0 < 0, |εd0|/Γmm′ <
1), a strong Coulomb repulsion U enforces ndσ ≈ 1/2,
implying via Eqs. (23), (17) a conductance close to the
conductance unit, i.e. dI/dV ≈ 2e2/h (the factor 2 re-
flects spin summation).
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