

NMR studies of the electron-doped hafnium nitride superconductor

Hideki Tou ^{a,1}, Yutaka Maniwa ^{b,d}, Shoji Yamanaka ^c, and Masafumi Sera ^a

^a Department of Quantum matters, AdSM, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526, Japan

^b Department of Physics, Tokyo Metropolitan University, Minami-osawa, Hachi-oji, Tokyo, 192-0397, Japan

^c Department of Applied Chemistry, Graduate school of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan

^d CREST, Japan Science and Technology Corporation (JST)

Abstract

We report on Nuclear Magnetic Resonance measurements on an oriented polycrystalline sample of the layered superconductor $\text{Li}_{0.48}(\text{THF})_{0.3}\text{HfNCl}$ having $T_c \sim 26$ K. ^{35}Cl -NMR signals were observed around zero Knight shift, suggesting that the partial Fermi-level density of states, $N^{Cl}(E_F)$, at Cl site is practically nothing, and the superconductivity is derived from the [HfN] double-honeycomb network. These results reconfirm that $\text{Li}_{0.48}(\text{THF})_{0.3}\text{HfNCl}$ is a quasi-two-dimensional superconductor.

Key words: Layered superconductor ;HfNCl ;Nuclear Magnetic Resonance ; Low carrier system

In 1998, Yamanaka and his coworkers discovered a new type of superconductor, Li-doped β -HfNCl [1]. This material has attracted a great deal of attention because of the variety of its physical property. The relatively high transition temperature of $T_c = 25.5$ K is realized by a small amount of Li-intercalation to the layered insulator HfNCl with a band gap of ~ 4 eV. On intercalation, the interlayer distance d increases from 9.23 Å of β -HfNCl to 18.7 Å of $\text{Li}_{0.48}(\text{THF})_{0.3}\text{HfNCl}$, as schematically shown in Fig.1, and electrons are believed to be doped into the double HfN layer.

The bulk superconductivity suddenly appears at $T_c \sim 25.5$ K for the doping contents of $x \sim 0.13$. T_c is almost constant (~ 25.5 K) up to $x \sim 0.5$ but gradually decreases to ~ 24.4 K toward $x \sim 1$ [1]. A question why such a high T_c is realized in the vicinity of insulating phase naturally arises.

Uemura *et. al.* pointed out the exotic nature of superconducting properties near the Bose-Einstein condensation limit from muon spin relaxation (μSR) measurements [6]. Recently, we reported the quasi-two-dimensional superconducting character in this

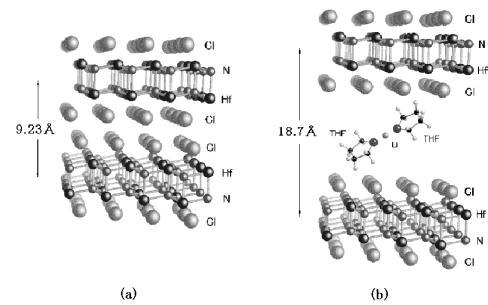


Fig. 1. Schematic structural model of (a) pristine HfNCl and (b) $\text{Li}_{0.48}(\text{THF})_{0.3}\text{HfNCl}$.

system from dc-magnetization and H-, Li-NMR measurements and clarified that the superconductivity is derived from the HfNCl layer [7,8]. Furthermore, we reported that the small Fermi level density of states (~ 0.25 states/eV) fail to explain the origin of the high T_c in terms of the conventional BCS model[9]. Anyway, whether or not the Cl block layers are related to the occurrence of superconductivity remain to be

¹ Corresponding author. Tel.: +81-824-24-7021; Fax: +81-824-24-7024; E-mail: tou@hiroshima-u.ac.jp

clarified. In this report, we present Cl-NMR results in the oriented $\text{Li}_{0.48}(\text{THF})_{0.3}\text{HfNCl}$.

Detailed sample preparation and experimental procedure were reported previously [1,8,9]. Magnetization measurements were performed up to $H = 15\text{T}$ to check the superconducting transition temperature.

Figure 2 shows the T dependence of ^{35}Cl -NMR spectra of $\text{Li}_{0.48}(\text{THF})_{0.3}\text{HfNCl}$ measured in the magnetic field $H \sim 9.4\text{T}$. Note that the ^{35}Cl -NMR spectra were observed around zero Knight shift. Here, the origin of the Knight shift is referred to the center-of-mass position of the spectrum of the pristine HfNCl, which is the isotropic chemical shift, $\sim 120\text{ ppm}$, with respect to spectrum of standard 1M-LiCl. The linewidth of $\sim 600\text{ ppm}$ is comparable to the chemical shift range, $0 \sim 1000\text{ ppm}$, in insulating covalent compounds such as CCl_4 . Thus, it is reasonable to consider that the ^{35}Cl -NMR shift is due to the chemical shift

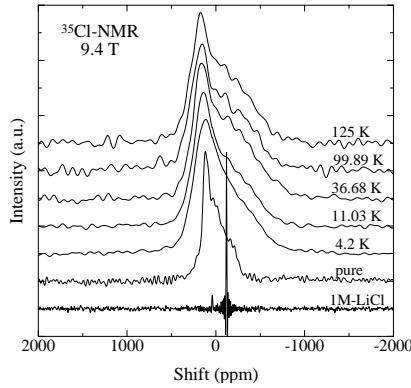


Fig. 2. Temperature dependence of ^{37}Cl -NMR spectra.

Figure 3 shows the T dependence of ^{37}Cl NMR shift. Below $T_c = 20.5\text{ K}$, the decrease of ^{35}Cl NMR shift below T_c , $\sim -8\text{ ppm}$ ($\sim 0.6\text{ Oe}$), is explained by the superconducting diamagnetic contribution in the vortex lattice, as discussed previously [7,8]; superconducting diamagnetic shift H_{dia} is estimated to be 0.4 Oe at $H = 94\text{ kOe}$ by using the relation $H_{dia} = H_{c1}\ln(0.381e^{-0.5}d/\xi)/\ln\kappa$ [10] for $\kappa = \sqrt{\kappa_{ab}\kappa_{||c}} \sim 151$, $\xi = \sqrt{\xi_{ab}\xi_c} \sim 307$, $H_{c1}^{ab} = 9\text{ Oe}$, $d = 160\text{ \AA}$ which is the nearest neighbor vortex lattice spacing at 94 kOe . These results indicate that the partial Fermi level density of states, $N^{Cl}(E_F)$, at Cl site is considerably small. Together with the previous reports [8], $[\text{HfN}]_2$ -honeycomb network plays a major role in occurrence of the superconductivity in this system. These results are consistent with the results from band calculations; the conduction band has a two-dimensional (2D) character originating in planer hafnium d_{xy} and $d_{x^2-y^2}$ hybridized with nitrogen p_x, p_y [3-5].

In summary, we measured ^{35}Cl -NMR in the T range of $4 \sim 150\text{K}$ across T_c for $\text{Li}_{0.48}(\text{THF})_{0.3}\text{HfNCl}$.

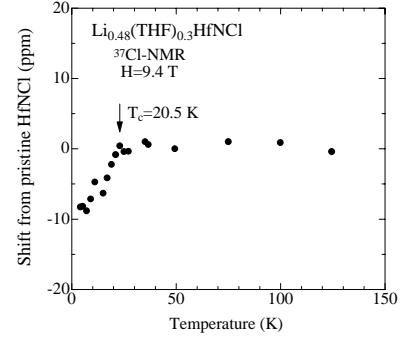


Fig. 3. Temperature dependence of ^{37}Cl -NMR shift.

Present studies demonstrate that the superconductivity in this system is derived from the two-dimensional $[\text{HfN}]_2$ honeycomb-network and consistent with the previous results [7,8]. In order to clarify the question why such a high T_c is realized in the vicinity of insulating phase, ^{15}N -NMR measurements are now in progress and details will be reported elsewhere.

Acknowledgements

H.T. thank S. Tsuji and S. Kobayashi for experimental assistance on magnetization measurements. This work was supported by Grant-in-Aids both for Scientific Research and COE Research (No.13CE2002) of the Ministry of Education, Sport, Science and Culture in Japan.

References

- [1] S. Yamanaka, K. Hotohama, and H. Kawaji, *Nature* **392**(1998)580 ; S. Yamanaka, *Annu. Rev. Mater. Sci.*, **30**(2000)53.
- [2] S. Shamoto *et al.*, *Physica C* **306**(1998)7 ; *J.Phys. Chem. Solids* **60**(1999)1431.
- [3] I. Hase and Y. Nishihara, *Phys. Rev. B* **60**, 1573 (1999); *Physica B* **281-282**, 788 (2000).
- [4] C. Felser and R. Seshadri, *J. Mater. Chem.* **9**, 459 (1999).
- [5] R. Weht, A. Filippetti, and W.E. Pickett, *Europhys. Lett.*, **48**, 320 (1999).
- [6] Y.J. Uemura *et al*, *Physica B* **289-290**, 389 (2000).
- [7] H. Tou *et al*, *Physica C*(2000)2139.
- [8] H. Tou *et al*, *Phys. Rev. B* **63**(2001)020508(R).
- [9] H. Tou *et al*, *Phys. Rev. Lett.* **86**(2001)5775.
- [10] P.G. De Gennes, *Superconductivity of Metals and Alloys* (Benjamin, New York,1966).