

Ferromagnetic insulating phase in $\text{Pr}_{1-x}\text{Ca}_x\text{MnO}_3$

Ryoichi Kajimoto ^{a,1}, Hidenori Mochizuki ^b, Hideki Yoshizawa ^b

^aDepartment of Physics, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan

^bNeutron Scattering Laboratory, ISSP, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106, Japan

Abstract

A ferromagnetic insulating (FM-I) manganite $\text{Pr}_{0.75}\text{Ca}_{0.25}\text{MnO}_3$ has been studied by neutron scattering technique. In contrast to a conventional double exchange picture, $\text{Pr}_{0.75}\text{Ca}_{0.25}\text{MnO}_3$ exhibits a FM-I state, and it has been demonstrated to be ascribed to an orbital ordering rather than charge ordering. The orbital ordering consists of the antiferromagnetic-type orbital ordering like LaMnO_3 hybridized with orbitals along the z direction.

Key words: perovskite manganite; orbital ordering; charge ordering

It is well known that by hole doping a number of perovskite manganites show a ferromagnetic metallic (FM-M) state accompanied with a drastic increase of the conductivity. Although the FM-M state has been qualitatively understood by the double exchange (DE) interaction mediated by doped holes, recent intensive studies have revealed that a checkerboard-type (CE-type) charge ordering (CO) is exceedingly robust against hole doping and should be one of the key issues for the insulator-metal transition.

A lightly doped manganite often exhibits a ferromagnetic insulating (FM-I) state [1]. Such a FM-I state is clearly incompatible with a simple DE picture, but might be caused by the existence of the CE-type charge ordered insulating phase [2]. $\text{Pr}_{1-x}\text{Ca}_x\text{MnO}_3$ is a typical example that has a FM-I phase for a relatively wide hole concentration region $0.05 \lesssim x < 0.3$ [3]. The coexistence of the FM-M phase and the charge ordered insulating phase seems to be plausible in this system because the FM-I phase locates adjacent to the CE-type charge ordered phase ($x \geq 0.3$) in the phase diagram. On the other hand, a recent resonant x-ray scattering (RXS) study suggested that the LaMnO_3 -type orbital ordering (OO), where $d(3x^2 - r^2)$ and $d(3y^2 - r^2)$ orbitals are alternately

aligned on all Mn sites, develops below above 500 K in $\text{Pr}_{0.75}\text{Ca}_{0.25}\text{MnO}_3$ [4]. Opposed to the FM spin ordering in $\text{Pr}_{0.75}\text{Ca}_{0.25}\text{MnO}_3$, however, LaMnO_3 -type OO is generally accompanied with the layered-type (A-type) antiferromagnetic (AFM) spin ordering.

To reveal the true origin of the FM-I state in $\text{Pr}_{1-x}\text{Ca}_x\text{MnO}_3$, we have performed a neutron scattering study on a single crystal of $\text{Pr}_{0.75}\text{Ca}_{0.25}\text{MnO}_3$. We have found that the FM-I state should be ascribed to an OO rather than any COs. The OO established in $\text{Pr}_{0.75}\text{Ca}_{0.25}\text{MnO}_3$ is similar to the LaMnO_3 -type OO, but has substantial e_g electron density along the z direction.

A single crystal sample studied in the present study was grown by the floating zone method. The crystal structure is orthorhombic $Pbnm$ with pseudo cubic lattice constants $a \sim b \sim c/\sqrt{2}$, and our crystal is fully twinned. T_C was determined by the present neutron study as 130 K. The neutron scattering experiments were performed using triple axis spectrometers GPTAS and HQR installed at the JRR-3M research reactor in JAERI, Tokai, Japan with neutron wave lengths $k_f = 3.81 \text{ \AA}^{-1}$ (GPTAS) and $k_i = 2.57 \text{ \AA}^{-1}$ (HQR).

First, we surveyed (hhl) and $(h0l)$ scattering planes to find signals from CO. We found the nuclear superlattice peaks as well as the pseudo CE-type AFM peaks indicating the presence of the CE-type CO. The intensity of the CE-type AFM peaks are, however, very small

¹ Corresponding author. E-mail: kaji@phys.ocha.ac.jp. Fax: +81-3-5978-5325

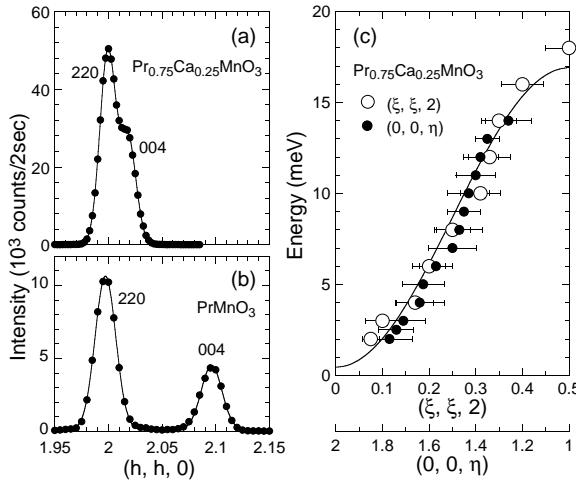


Fig. 1. (a) Profiles of the (220)/(004) doublets along the [110] direction for $\text{Pr}_{0.75}\text{Ca}_{0.25}\text{MnO}_3$ and (b) for PrMnO_3 . (c) Spin wave dispersion relations in $\text{Pr}_{0.75}\text{Ca}_{0.25}\text{MnO}_3$ along the [110] and [001] directions. Error bars indicate the FWHMs of the profiles of the constant energy scans. Solid line is a dispersion curve for the simple FM Heisenberg model with nearest neighbor couplings. All the data were measured at 8 K.

compared to the FM Bragg peaks. From their intensities, we estimated the volume fraction of the CE-type charge ordered phase to be in the order of 0.1%. We have also tried to find any other types of CO, but did not detect any clear evidence. Therefore, we conclude that the insulating behavior of $\text{Pr}_{0.75}\text{Ca}_{0.25}\text{MnO}_3$ does not come from the CO but it is intrinsic to the FM state in the $x = 0.25$ sample.

Next, we have tried to check the OO reported by the RXS study [4]. If the LaMnO_3 -type OO exists, it will produce anisotropies in the crystal structure as well as in spin fluctuations: the lattice constants a and b become longer than $c/\sqrt{2}$ due to the cooperative Jahn-Teller distortions, and the exchange interaction within the ab plane J_{ab} becomes smaller than that along the c axis J_c as observed in LaMnO_3 [5].

Figure 1(a) shows a profile of the (220)/(004) doublet along the [110] direction at $T = 8$ K. The profile consists of two peaks, indicative of the LaMnO_3 -type OO. We observed the peaks begin to split below $T \sim 450$ K, which is consistent to the OO temperature observed by the RXS study [4]. The magnitude of the splitting is, however, quite small compared with PrMnO_3 (Fig. 1(b)), the latter is expected to have the LaMnO_3 -type OO. The smallness of the anisotropy was also observed in the spin fluctuations. Figure 1(c) shows the spin wave dispersion relations along the inplane direction [110] and the out-of-plane direction [001] at $T = 8$ K. Two dispersion curves well coincide, indicating that the spin exchange is isotropic ($J_{ab} \sim J_c$) against the expectation from the possible LaMnO_3 -type OO.

The observed anisotropy in the crystal structure

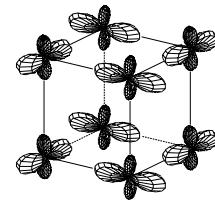


Fig. 2. Schematic view of the orbital ordering of $(|3z^2 - r^2| \pm |x^2 - y^2|)/\sqrt{2}$.

means that there may exist a LaMnO_3 -like OO, but its smallness and the isotropy in J suggest strongly that there is substantial electron density along the z direction. Such an OO is recently proposed experimentally and theoretically in the insulating phase of $\text{La}_{0.88}\text{Sr}_{0.12}\text{MnO}_3$ [6]. It is expressed by a hybridization of the $d(3z^2 - r^2)$ orbital and the $d(x^2 - y^2)$ orbital as $\cos(\frac{\theta}{2})|3z^2 - r^2\rangle \pm \sin(\frac{\theta}{2})|x^2 - y^2\rangle$. We show in Fig. 2 a schematic picture of this OO when $\theta = \pi/2$. In this OO, the orbitals are aligned antiferromagnetically in the ab plane like LaMnO_3 -type OO and also extend along the z direction. The orbitals along the z direction cause small anisotropies in the lattice structure and in spin fluctuations. The AFM-type OO within the ab plane disfavors the electron hopping, while the FM spin couplings are mediated by the super exchange interactions, consequently resulting in the FM-I state. Note that this OO is compatible with the observation by the RXS study [4] because the symmetry of the arrangement of orbitals is same as the LaMnO_3 -type OO.

The present result suggests that the $(|3z^2 - r^2| \pm |x^2 - y^2|)/\sqrt{2}$ -type OO is a ubiquitous phenomenon in the lightly-doped FM-I region in perovskite manganites. This OO becomes more stable as the one electron band width W becomes narrower, because the FM-I region expands in x - T phase diagram when W gets narrow [1].

In conclusion, we have performed a neutron scattering study on a single crystal of $\text{Pr}_{0.75}\text{Ca}_{0.25}\text{MnO}_3$ to reveal the origin of the FM-I state. We have found that the FM-I state should be ascribed to an OO rather than any COs. The OO resembles LaMnO_3 -type OO with orbitals along the z direction.

This work was supported by a Grant-In-Aid for Scientific Research from MEXT, Japan.

References

- [1] M. Imada *et al.*, Rev. Mod. Phys. **70** (1998) 1039.
- [2] P. Dai *et al.*, Phys. Rev. Lett. **85** (2000) 2553.
- [3] Y. Tomioka *et al.*, Phys. Rev. B **53** (1996) R1689.
- [4] M. v. Zimmermann *et al.*, Phys. Rev. B **64** (2001) 195133.
- [5] K. Hirota *et al.*, J. Phys. Soc. Jpn. **65** (1996) 3736.
- [6] Y. Endoh *et al.*, Phys. Rev. Lett. **82** (1999) 4328; S. Okamoto *et al.*, Phys. Rev. B **61** (2000) 14647.