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Abstract

We apply the theory for the transmission probability T (ε) through small interacting systems, which was formulated
based on the Kubo formalism in the previous study, to a series of quantum dots described by the N -impurity
Anderson model. Specifically, we calculate T (ε) for N = 2 with the order U2 self-energy and vertex corrections
which satisfy the current conservation, and examine the two different parameter regions at t < Γ and t > Γ. Here
t is the inter-dot transfer and Γ is the level broadening caused by the coupling with the noninteracting leads.
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Recently, we have reformulated the conductance g
for small interacting systems connected to two nonin-
teracting leads based on the Kubo formula [1]. Carrying
out the analytic continuation of the vertex corrections
following Éliashberg [2], we have obtained a Landauer-
type expression applicable to the interacting electrons,
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T (ε) , (1)

where f(ε) is the Fermi function. The transmission
probability T (ε) is defined in terms of the vertex cor-
rections or the three point correlation function [1], and
depends on temperature T in the interacting systems.
Our derivation uses neither the precise form of the
Hamiltonian nor the perturbation expansion, and thus
the formulation can be applied to various systems such
as quantum dots and atomic wires of nanometer size.

In this report we will apply the theory to the series
of N Anderson impurities, which can be regarded as a
model for a network of quantum dots, and examine the
parameter region that was not studied in the previous
paper [1]. The system we consider consists of three
regions; a small interacting region at the center (C),
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and two noninteracting leads at left (L) and right (R).
The total Hamiltonian is Htot = H0 +Hint

C , with H0 =
HL + HR + H0

C + Hmix. Here, HL and HR are the
Hamiltonian for the noninteracting leads. The central
region and the connection to the leads are described by

H0
C = −t
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�
, (2)

Hint
C = U
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nj↑ nj↓ − (nj↑ + nj↓)/2
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Hmix = −v
�
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c†1σc0σ + c†N+1σcNσ + H.c.

�
, (4)

in the standard notation. Here the label 0 (N + 1)
assigned to the site at the interface of the left (right)
lead. The contributions of Hmix are described through
the parameter Γ = πρ v2, where ρ is the density of
states of the isolated lead.

Specifically, in this report we consider the electron-
hole symmetric case and focus on the system of N =
2. The conductance g for the two-impurity Anderson
model has been studied extensively. Particularly, the
competition between the Kondo effect and the inter-
dot magnetic exchange coupling occurring in this sys-
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tem has been investigated in detail based on the precise
calculations by the numerical renormalization group
method [3]. Nevertheless, the transmission probability
T (ε) has not been studied systematically, and as seen
below it contains important information about the ex-
citation spectrum.

To calculate T (ε) from the expression which is writ-
ten in terms of the Green’s functions and vertex correc-
tions [1], we take into account the order U2 self-energy
and vertex part illustrated in Fig. 1, taking H0 to be
the unperturbed Hamiltonian. We note that the cur-
rent conservation is satisfied in the calculations. In Fig.
2 the transmission probability at T = 0 is plotted for
N = 2, where U/(2πt) is chosen to be (—) 0.0, (–◦–)
1.0, and (–•–) 2.5. The ratio of the mixing to the inter-
dot transfer, Γ/t, is taken to be (a) 0.75 and (b) 1.25.

The low-energy behavior of T (ε) is quit different de-
pending on the value of Γ/t. As seen in Fig. 2 (a), for
Γ < t there are two resonant peaks at ε � ±t, which
for U = 0 correspond to the bonding and anti-bonding
states of the two dots. As U increases, the height of
these two low-energy peaks decreases, but the width of
the peaks becomes sharp and the valley at ε = 0 be-
comes deep. Two additional broad peaks at high energy
ε � ±U/2 appearing for U/(2πt) � 1.0 correspond
to the upper and lower Hubbard levels of the atomic
character. Fig. 2 (b) shows the results in the other pa-
rameter region Γ > t. For U/(2πt) � 1.0, the trans-
mission probability T (ε) has only a single peak at low
energies. The hight of this low-energy peak increases
with U until it reaches the unitary limit value. Then
for U/(2πt) � 1.0 the hight of the peak decreases with
increasing U , and eventually the single peak splits into
two as seen in the results for U/(2πt) = 2.5.

The conductance can be obtained from eq. (1), and
at T = 0 it is determined by the value of T (ε) at ε = 0.
Thus for Γ < t the conductance decreases monoton-
ically with increasing U , while for Γ > t it shows a
maximum at the value of U which corresponds to the
unitary limit. At low temperatures, the T dependence
of the conductance is scaled by the energy determined
by the width of the valley when T (ε) has the two-peak
structure at low energies. In the other case, for the
single-peak structure, the energy scale is determined
by the width of the central peak. We note that the tem-
perature dependence of T (ε) arises through that of the
self-energy and vertex corrections, and at high temper-
atures the peak structure at low energies is smeared
by the thermal fluctuations as demonstrated for Γ/t =
0.75 in the previous paper [1].

The transmission probability T (ε) we have formu-
lated can also be written in terms of the three-point cor-
relation function [1], and the Lehmann representation
of it can be used for the nonperturbative approaches
such as the numerical renormalization group and the
quantum Monte Carlo methods.
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Fig. 1. The order U2 corrections of (a) the self-energy and

(b)–(d) the current vertex, where 1 ≤ j, j′ ≤ N .

Fig. 2. Transmission probability for N = 2 at T = 0 for three

values of U/(2πt); (—) 0.0, (–◦–) 1.0, and (–•–) 2.5. The value

of the ratio Γ/t is taken to be (a) 0.75 and (b) 1.25.
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