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Abstract

In order to determine the superconducting gap structure of the borocarbide superconductor YNi2B2C, we have
measured the angular variation of the c-axis thermal conductivity κzz in magnetic field rotated within the ab-planes.
A clear fourfold symmetry with narrow cusps was observed in the angular variation of κzz . These results provide
a strong evidence that the gap function has point nodes which are located along the a- and b-axes of the crystal.
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The borocarbide superconductor YNi2B2C with a
relatively high Tc of 15.5 K [1] has attracted much
attention because of a variety of interesting phys-
ical properties. In particular, the superconducting
gap structure is one of the fascinating issues. Recent
measurements of temperature and magnetic-filed de-
pendence of the heat capacity indicate the presence of
a large anisotropy in the superconducting gap func-
tion [2,3]. Moreover the impurity effect suggests an
anisotropic s-wave order parameter [2]. Despite these
studies, the detailed structure of the gap function re-
mains unresolved. Since the gap structure is closely
related to the pairing interaction, its clarification is
crucial for understanding the mechanism of supercon-
ductivity. In addition to that, the transition between
triangular and square vortex lattice observed in this
compound [4] should be related to the gap structure.
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Here in order to determine the superconducting gap
structure, we have measured the angular dependence
of the c-axis thermal conductivity κzz by rotating
the applied magnetic filed � within the basal plane.
This method has recently been demonstrated to be a
powerful means for determining the gap structure. In
fact, the superconducting gap functions were success-
fully determined by this method in high-Tc cuprate
YBa2Cu3O7−δ [5,6], heavy fermion CeCoIn5 [7],
ruthenate Sr2RuO4 [8], and organic κ-(ET)2Cu(NCS)2
[9]. All of these superconductors have line nodes. Here
we show that the results of the thermal conductivity in
YNi2B2C indicates the existence of point nodes which
are located along the [100] and [010] directions.

In the superconductor with nodes, the thermal
transport is governed by the delocalized quasiparticles
(QPs) arising from the nodes [3,2]. The Doppler shift
of the delocalized QPs energy spectrum [10], which
gives rise to a finite density of states (DOS) at the
Fermi surface, causes a steep increase of the thermal
conductivity with �. Since the magnitude of the
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Fig. 1. (a) Angular variation of the c-axis thermal conductivity

κzz at H=1 T and T=0.43 K (thermal current q‖ c). κzz are

measured by rotating H conically as a function of φ at fixed θ

(see the inset). The crosses represent the data obtained under

the field cooling condition at each angle. (b) The gap function

∆(k) of the s + g-wave model.

Doppler shift is sensitive to the relative orientation
between � and node [11], the thermal conductivity
can be a probe of the nodal structure.

In Fig. 1(a), we show the angular variation of κzz ,
which was measured by rotating � conically around
the c-axis as a function of the azimuthal angle φ. The
thermal current � was applied parallel to the c-axis.
Here, the polar angle θ=(�, �) is fixed constant, and
φ is measured from a-axis. The field trapping effect is
negligibly small at H=1 T. At θ = 90◦, a clear fourfold
symmetry with narrow cusps at φ = 0◦ and 90◦ was ob-
served. Moreover, the amplitude of fourfold symmetry
is strongly suppressed at θ = 45◦. We stress that the
fourfold symmetry is not a result of the anisotropies
of the upper critical field Hc2 and the Fermi veloc-
ity vF for the following reasons. First, the anisotropy
of Hc2 within the basal plane shows a sinusoidal φ-
dependence, which is very different from Fig. 1(a). Sec-
ond, the amplitude of fourfold oscillation of Hc2 at θ =
45◦ is nearly 1/3 of that at θ = 90◦, while the ampli-
tude of κzz at θ = 45◦ is less than 1/5 of that at θ =
90◦, showing the different θ dependence. Third, accord-

ing to the calculation based on the Kubo formula, the
anisotropy of vF will only enter as a secondary effect
in the φ-variation of κzz . These consideration lead us
to conclude that the fourfold symmetry originates from
the anisotropy of the superconducting gap structure.

We next discuss the detailed nodal structure. Ac-
cording to prediction of the Doppler shift, the DOS
shows the maximum (minimum) when � is applied to
the antinodal (nodal) directions. Therefore the mini-
mum of κzz at φ = 0◦ and 90◦ indicates that the nodes
are located along the [100] and [010] directions. The
narrow cusp structure and the rapid suppressoin of the
amplitude of fourfold symmetry with decreasing θ are
crucial for identifying the type of nodes. For the point
node, we adopt a gap function s+g-wave order parame-
ter ∆(�) = 1

2
∆0{1−sin4 θ cos(4φ)} (see Fig. 1(b)) [12].

According to the calculation in Ref.[13], both the cusp
structure and θ-dependence in κzz(H,φ, θ) are well re-
produced [14]. On the other hand, the same calcula-
tion for d-wave order parameter with line node is in-
consistent with the experimental results. Therefore we
can conclude that the superconducting gap function of
YNi2B2C has point nodes located along the [100] and
[010] directions.

In summary, we measured the c-axis thermal con-
ductivity of YNi2B2C as a function of the magnetic
field rotated to various directions relative to the crys-
tal axis. On the basis of these results, we arrived at
a conclusion that the superconducting gap function of
YNi2B2C has point nodes which are located along the
[100] and [010] directions. The determination of the
gap structure would give important information on the
pairing mechanism and the unusual superconducting
properties of YNi2B2C.
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