

The Self-Consistent Perturbation Theory of An Inhomogeneous Superconductor

Mamoru Uchinami ^a,

^a*Laboratory of Mathematical Science, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan*

Abstract

For the purpose of investigating an inhomogeneous superconducting system, a theory of diordered superconductors subject to a magnetic field is evolved. In order to take account of the inhomogeneities induced in this superconducting system, we describe the generalized Hartree-Fock scheme to be written by the temperature Green's functions in the spatial representation, and reformulate the self-consistent perturbation theory of the Nambu formalism. And we evolve the gradient expansion theory on the basis of the Nambu formalism.

Key words: inhomogeneous superconductor; Nambu formalism; gradient expansion

1. Introduction

Recently, the possibility has been pointed out that increasing the disorder of an ultrathin superconducting film might produce a quantum phase transition to insulating state. The subject of the superconductor-insulator transition in two dimensions is an active area of both experimental and theoretical studies [1]. For the purpose of investigating such an inhomogeneous superconducting system, a theory of diordered superconductors subject to a magnetic field is evolved.

A self-consistent perturbation theory of superconductivity was evolved by Nambu [2] that the generalized Hartree-Fock scheme (i.e., the BCS theory) could be described as its first-order self-consistent perturbation theory. In order to take account of inhomogeneities induced in the superconducting system in magnetic field, we describe the generalized Hartree-Fock scheme to be written by the temperature Green's functions in the spatial representation, and reformulate the self-consistent perturbation theory of the Nambu formalism.

The problem of incorporating many-body effects outside the Hartree-Fock scheme into the inhomogeneous electron system was studied by Baraff et al [3].

Their gradient expansion method to expand termwise in powers of the gradient which measures the inhomogeneities was applied to the problem superconductivity by Werthamer et al [4]. For the inhomogeneous superconductor, we evolve the gradient expansion theory on the basis of the Nambu formalism of the self-consistent perturbation theory.

2. A self-consistent perturbation formulation

Such an inhomogeneous system is realized under the application of external magnetic field, or on the inhomogeneous lattice subjected to impurity potentials $U_{\text{imp}}(\mathbf{r})$. When we introduce the Hartree-Fock spin-independent potential $U_{\text{HF}}(\mathbf{r})$, and the gap functions $\Delta(\mathbf{r}), \Delta^*(\mathbf{r})$ which are caused by the BCS pairing interaction of a nonretarded zero-range attractive potential, we rewrite the grand canonical hamiltonian as

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}' \quad (1)$$

where \mathcal{H}_0 is given by

$$\mathcal{H}_0 = \int d\mathbf{r} \sum_{\sigma} \psi_{\sigma}^{\dagger}(\mathbf{r}) \mathcal{D}(\mathbf{r}) \psi_{\sigma}(\mathbf{r})$$

$$-\int d\mathbf{r} \left\{ \Delta^*(\mathbf{r})\psi_\uparrow(\mathbf{r})\psi_\downarrow(\mathbf{r}) + \Delta(\mathbf{r})\psi_\downarrow^\dagger(\mathbf{r})\psi_\uparrow^\dagger(\mathbf{r}) \right\}, \quad (2)$$

with

$$\mathcal{D}(\mathbf{r}) = \left\{ \frac{1}{2m} \left(-i\hbar \frac{\partial}{\partial \mathbf{r}} + \frac{e}{c} \mathbf{A}(\mathbf{r}) \right)^2 - \mu \right\} + U_{\text{imp}}(\mathbf{r}) + U_{\text{HF}}(\mathbf{r}), \quad (3)$$

and \mathcal{H}' is given by

$$\begin{aligned} \mathcal{H}' = & -g \int d\mathbf{r} \psi_\downarrow^\dagger(\mathbf{r})\psi_\uparrow^\dagger(\mathbf{r})\psi_\uparrow(\mathbf{r})\psi_\downarrow(\mathbf{r}) \\ & - \int d\mathbf{r} \left\{ \sum_\sigma \psi_\sigma^\dagger(\mathbf{r})U_{\text{HF}}(\mathbf{r})\psi_\sigma(\mathbf{r}) \right. \\ & \left. - \Delta^*(\mathbf{r})\psi_\uparrow(\mathbf{r})\psi_\downarrow(\mathbf{r}) - \Delta(\mathbf{r})\psi_\downarrow^\dagger(\mathbf{r})\psi_\uparrow^\dagger(\mathbf{r}) \right\}. \end{aligned} \quad (4)$$

Here we assume that the Hartree-Fock potential $U_{\text{HF}}(\mathbf{r})$, and the gap functions $\Delta(\mathbf{r}), \Delta^*(\mathbf{r})$ are to be determined self-consistently.

We can diagonalize \mathcal{H}_0 by using the generalized Bogoliubov transformatin to be defined by a set of orthonormal solutions which satisfy the Bogoliubov equation

$$(\mathcal{D}(\mathbf{r}) - E_\nu)u_\nu(\mathbf{r}) = -\Delta(\mathbf{r})v_\nu(\mathbf{r}), \quad (5)$$

$$(\mathcal{D}^*(\mathbf{r}) + E_\nu)v_\nu(\mathbf{r}) = \Delta^*(\mathbf{r})u_\nu(\mathbf{r}). \quad (6)$$

Under \mathcal{H}_0 , the normal and superconducting temperature Green's functions can be explicitly expressed by

$$\begin{aligned} G_{0\uparrow\uparrow}(\mathbf{r}, \mathbf{r}'; i\omega_n) &= G_{0\downarrow\downarrow}(\mathbf{r}, \mathbf{r}'; i\omega_n) \equiv G_0(\mathbf{r}, \mathbf{r}'; i\omega_n) \\ &= \sum_\nu \left\{ \frac{u_\nu(\mathbf{r})u_\nu^*(\mathbf{r}')}{i\omega_n - (E_\nu/\hbar)} + \frac{v_\nu^*(\mathbf{r})v_\nu(\mathbf{r}')}{i\omega_n + (E_\nu/\hbar)} \right\}, \end{aligned} \quad (7)$$

$$\begin{aligned} F_{0\uparrow\downarrow}(\mathbf{r}, \mathbf{r}'; i\omega_n) &= -F_{0\downarrow\uparrow}(\mathbf{r}, \mathbf{r}'; i\omega_n) \equiv F_0(\mathbf{r}, \mathbf{r}'; i\omega_n) \\ &= \sum_\nu \left\{ \frac{u_\nu(\mathbf{r})v_\nu^*(\mathbf{r}')}{i\omega_n - (E_\nu/\hbar)} - \frac{v_\nu^*(\mathbf{r})u_\nu(\mathbf{r}')}{i\omega_n + (E_\nu/\hbar)} \right\}. \end{aligned} \quad (8)$$

The 2×2 Green's function matrix $\hat{\mathcal{G}}_0(\mathbf{r}, \mathbf{r}'; i\omega_n)$ defined by the G_0, F_0 and their complex conjugates satisfy a matrix equation

$$(i\hbar\omega_n \hat{1} - \hat{\mathcal{L}}(\mathbf{r})) \hat{\mathcal{G}}_0(\mathbf{r}, \mathbf{r}'; i\omega_n) = \hbar\delta(\mathbf{r} - \mathbf{r}') \hat{1}, \quad (9)$$

with

$$\hat{\mathcal{L}}(\mathbf{r}) = \begin{pmatrix} \mathcal{D}(\mathbf{r}) & \Delta(\mathbf{r}) \\ \Delta^*(\mathbf{r}) & -\mathcal{D}^*(\mathbf{r}) \end{pmatrix}. \quad (10)$$

Under the full grand canonical hamiltonian \mathcal{H} , the corresponding Green's function matrix $\hat{\mathcal{G}}(\mathbf{r}, \mathbf{r}'; i\omega_n)$ satsisfies the following matrix integral equation of motion

$$\begin{aligned} \hat{\mathcal{G}}(\mathbf{r}, \mathbf{r}'; i\omega_n) &= \hat{\mathcal{G}}_0(\mathbf{r}, \mathbf{r}'; i\omega_n) \\ &+ \int d\mathbf{r}_1 \hat{\mathcal{G}}_0(\mathbf{r}, \mathbf{r}_1; i\omega_n) \hat{\Sigma}(\mathbf{r}_1) \hat{\mathcal{G}}(\mathbf{r}_1, \mathbf{r}'; i\omega_n). \end{aligned} \quad (11)$$

Within the approximation which takes account of only the lowest-order self-energy cotribution, we require that the quasi-particle energy E_ν is unaffected and the self-consistent condition $\hat{\Sigma} \approx \hat{\Sigma}^{(1)} = \hat{0}$ is to be satisfied. Consequently, the self-consistent equations determining $U_{\text{HF}}(\mathbf{r}), \Delta(\mathbf{r})$, and $\Delta^*(\mathbf{r})$ are derived as

$$\begin{aligned} U_{\text{HF}}(\mathbf{r}) &= g \sum_\nu \left\{ u_\nu^*(\mathbf{r})u_\nu(\mathbf{r}) (1 - f(E_\nu)) \right. \\ & \left. + v_\nu^*(\mathbf{r})v_\nu(\mathbf{r})f(E_\nu) \right\}, \end{aligned} \quad (12)$$

$$\Delta(\mathbf{r}) = g \sum_\nu u_\nu(\mathbf{r})v_\nu^*(\mathbf{r}) (1 - 2f(E_\nu)), \quad (13)$$

$$\Delta^*(\mathbf{r}) = g \sum_\nu u_\nu^*(\mathbf{r})v_\nu(\mathbf{r}) (1 - 2f(E_\nu)), \quad (14)$$

where $f(E_\nu) = 1/(e^{\beta E_\nu} + 1)$ denotes a fermi distribution function for the quasi-particle energy E_ν .

In correspondence to the matrix equation (11) of motion, let's introduce the kernel $\hat{K}(\mathbf{r}, \mathbf{s}; i\omega_n)$ of a 2×2 matrix form to be defined by

$$\begin{aligned} \hat{K}(\mathbf{r}, \mathbf{s}; i\omega_n) & \\ & \equiv \delta(\mathbf{r} - \mathbf{s}) \left\{ i\hbar\omega_n \hat{1} - \hat{\mathcal{L}}(\mathbf{r}) \right\} - \hbar\hat{\Sigma}(\mathbf{r}, \mathbf{s}; i\omega_n). \end{aligned} \quad (15)$$

Then, the matrix integral equation of motion for the Green's function matrix $\hat{\mathcal{G}}(\mathbf{r}, \mathbf{r}'; i\omega_n)$ is given by

$$\int d\mathbf{s} \hat{K}(\mathbf{r}, \mathbf{s}; i\omega_n) \hat{\mathcal{G}}(\mathbf{s}, \mathbf{r}'; i\omega_n) = \hbar\delta(\mathbf{r} - \mathbf{r}') \hat{1}. \quad (16)$$

By introducing center of mass coordinate \mathbf{R} and relative coordinate \mathbf{l} for the Green's functions, we evolve the gradient expansion theory due to inhomogeneities. As a result, we get the Green's function matrix $\hat{\mathcal{G}}(\mathbf{k}, \mathbf{R}; i\omega_n)$ to be calculated up to the lowest-order of the gradient expasian. And so the self-consistent equations corresponding to $\hat{\Sigma} = \hat{0}$, which determine the self-consistent fields $U_{\text{HF}}(\mathbf{R}), \Delta(\mathbf{R})$ and $\Delta^*(\mathbf{R})$, can be obtained.

References

- [1] A. M. Goldman and N. Markovic, Physics Today **51** (1998) 39; references therein.
- [2] Y. Nambu, Phys. Rev. **117** (1960) 648.
- [3] G. A. Baraff and S. Borowitz, Phys. Rev. **121**, 1704 (1961); G. A. Baraff, Phys.Rev. **123**, 2087 (1961); D. F. DuBois and M. G. Kivelson, Phys. Rev. **127**, 1182 (1962).
- [4] N. R. Werthamer, Phys. Rev. **132**, 663 (1963); L. Tewordt, Phys. Rev. **132**, 595 (1963).