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Abstract

For the purpose of investigating an inhomogeneous superconducting system, a theory of diordered superconductors
subject to a magnetic field is evolved. In order to take account of the inhomogeneities induced in this superconducting
system, we describe the generalized Hartree-Fock scheme to be written by the temperature Green’s functions in
the spatial representation, and reformulate the self-consistent perturbation theory of the Nambu formalism. And
we evolve the gradient expansion theory on the basis of the Nambu formalism.
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1. Introduction

Recently, the possibility has been pointed out that
increasing the disorder of an ultrathin superconduct-
ing film might produce a quantum phase transition to
insulating state. The subject of the superconductor-
insulator transition in two dimensions is an active area
of both experimental and theoretical studies [1]. For
the purpose of investigating such an inhomogeneous
superconducting system, a theory of diordered super-
conductors subject to a magnetic field is evolved.

A self-consistent perturbation theory of supercon-
ductivity was evolved by Nambu [2] that the general-
ized Hartree-Fock scheme (i.e., the BCS theory) could
be described as its first-order self-consistent perturba-
tion theory. In order to take account of inhomogeneities
induced in the superconducting system in magnetic
field, we describe the generalized Hartree-Fock scheme
to be written by the temperature Green’s functions
in the spatial representation, and reformulate the self-
consistent perturbation theory of the Nambu formal-
ism.

The problem of incorporating many-body effects
outside the Hartree-Fock scheme into the inhomoge-
neous electron system was studied by Baraff et al [3].

Their gradient expansion method to expand termwise
in powers of the gradient which measures the inho-
mogeneities was applied to the problem superconduc-
tivity by Werthamer et al [4]. For the inhomogeneous
superconductor, we evolve the gradient expansion
theory on the basis of the Nambu formalism of the
self-consistent perturbation theory.

2. A self-consistent perturbation formulation

Such an inhomogeneous system is realized under the
application of external magnetic field, or on the in-
homogeneous lattice subjected to impurity potentials
Uimp(�). When we introduce the Hartree-Fock spin-
independent potential UHF(�), and the gap functions
∆(�),∆∗(�) which are caused by the BCS pairing in-
teraction of a nonretarded zero-range attractive poten-
tial, we rewrite the grand canonical hamiltonian as

H = H0 + H′ (1)

where H0 is given by

H0 =

∫
d�
∑

σ

ψ†
σ(�)D(�)ψσ(�)
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−
∫
d�
{
∆∗(�)ψ↑(�)ψ↓(�) + ∆(�)ψ†

↓(�)ψ
†
↑(�)

}
, (2)

with

D(�) =

{
1

2m

(
−ih̄ ∂

∂�
+
e

c
�(�)

)2

− µ

}
+Uimp(�) + UHF(�), (3)

and H′ is given by

H′ = −g
∫
d�ψ†

↓(�)ψ
†
↑(�)ψ↑(�)ψ↓(�)

−
∫
d�
{∑

σ

ψ†
σ(�)UHF(�)ψσ(�)

−∆∗(�)ψ↑(�)ψ↓(�) −∆(�)ψ†
↓(�)ψ

†
↑(�)

}
. (4)

Here we assume that the Hartree-Fock potential
UHF(�), and the gap functions ∆(�),∆∗(�) are to be
determined self-consistently.

We can diagonalize H0 by using the generalized
Bogoliubov transformatin to be defined by a set of
orthonormal solutions which satisfy the Bogoliubov
equation(

D(�) − Eν

)
uν(�) = −∆(�)vν(�), (5)(

D∗(�) + Eν

)
vν(�) = ∆∗(�)uν (�). (6)

Under H0, the normal and superconducting tempera-
ture Green’s functions can be explicitly expressed by

G0↑↑(�, �
′; iωn) = G0↓↓(�, �

′; iωn) ≡ G0(�, �
′; iωn)

=
∑

ν

{
uν(�)u∗

ν (�′)
iωn − (Eν/h̄)

+
v∗ν(�)vν (�′)
iωn + (Eν/h̄)

}
, (7)

F0↑↓(�, �
′; iωn) = −F0↓↑(�, �

′; iωn) ≡ F0(�, �
′; iωn)

=
∑

ν

{
uν(�)v∗ν(�′)
iωn − (Eν/h̄)

− v∗ν(�)uν (�′)
iωn + (Eν/h̄)

}
. (8)

The 2×2 Green’s function matrix Ĝ0(�, �
′; iωn) defined

by the G0, F0 and their complex conjugates satisfy a
matrix equation(
ih̄ωn1̂ − L̂(�)

)
Ĝ0(�, �

′; iωn) = h̄δ(� − �
′)1̂, (9)

with

L̂(�) =

(
D(�) ∆(�)

∆∗(�) −D∗(�)

)
. (10)

Under the full grand canonical hamiltonian H, the cor-
responding Green’s function matrix Ĝ(�, �′; iωn) satsi-
fies the following matrix integral equation of motion

Ĝ(�, �′; iωn) = Ĝ0(�, �
′; iωn)

+

∫
d�1Ĝ0(�, �1; iωn)Σ̂(�1)Ĝ(�1, �

′; iωn). (11)

Within the approximation which takes account of only
the lowest-order self-energy cotribution, we require
that the quasi-particle energy Eν is unaffected and
the self-consistent condition Σ̂ ≈ Σ̂(1) = 0̂ is to be
satisfied. Consequently, the self-consistent equations
determining UHF(�),∆(�), and ∆∗(�) are derived as

UHF(�) = g
∑

ν

{
u∗

ν(�)uν (�) (1 − f(Eν))

+v∗ν(�)vν(�)f(Eν )
}
, (12)

∆(�) = g
∑

ν

uν(�)v∗ν (�) (1 − 2f(Eν)) , (13)

∆∗(�) = g
∑

ν

u∗
ν(�)vν (�) (1 − 2f(Eν)) , (14)

where f(Eν) = 1/(eβEν + 1) denotes a fermi distribu-
tion function for the quasi-particle energy Eν .

In correspondence to the matrix equation (11) of
motion, let’s introduce the kernel K̂(�, �; iωn) of a 2×2
matrix form to be defined by

K̂(�, �; iωn)

≡ δ(� − �)
{
ih̄ωn1̂ − L̂(�)

}
− h̄Σ̂(�, �; iωn). (15)

Then, the matrix integral equation of motion for the
Green’s function matrix Ĝ(�, �′; iωn) is given by∫
d�K̂(�, �; iωn)Ĝ(�, �′; iωn) = h̄δ(� − �

′)1̂. (16)

By introducing center of mass coordinate � and rela-
tive coordinate � for the Green’s functions, we evolve
the gradient expansion theory due to inhomogeneities.
As a result, we get the Green’s function matrix
G̃(�,�; iωn) to be calculated up to the lowest-order
of the gradient expasion. And so the self-consistent
equations corresponding to Σ̂ = 0̂, which determine
the self-consistent fields UHF(�),∆(�) and ∆∗(�),
can be obtained.
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