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Abstract

We investigate a Fermi surface of the periodic Anderson model by the finite temperature quantum Monte Carlo
method. Although the Luttinger sum rule predicts the system has a large Fermi surface (at T = 0) that contains
both conduction and f electrons, the momentum distribution function n(k) at a finite temperature shows large
change at a small Fermi surface that contains only conduction electrons without f electrons. Also clear signature
of the large Fermi surface is not easily observed. On the other hand, the momentum-resolved compressibility dn(k)

dµ ,
which reflects effects of an infinitesimal doping, shows a peak structure at the large Fermi surface even at an easily
accessible temperature.
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The periodic Anderson model is one of the basic
models for the heavy fermion systems, where the inter-
play between the two kinds of electrons plays an im-
portant role. One is conduction electrons and the other
is f electrons with electron-electron interaction. Since
the f electrons are relatively localized, they feel strong
Coulomb interaction. If the interaction becomes large,
the charge degree of freedom is strongly suppressed.
Especially, in the strong coupling limit, the f electrons
are reduced to the localized spins, where the system is
well described by the Kondo lattice model [2]. In this
context, there has been discussed whether the localized
f electrons participate in the Luttinger sum rule [1].
Recent numerical studies for the Kondo lattice model
suggest the evidence of the large Fermi surface (FS)
both in the strong [3] and weak [4] coupling region. In
this work, we investigate the periodic Anderson model
directly focusing on the FS.
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The Hamiltonian of the periodic Anderson model is
written as

H = −t
�

i,σ

(c†iσci+1σ + c†i+1σciσ) − V
�
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(c†iσfiσ + f †
iσciσ)

− ∆
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nf
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(nf
i↑ − 1/2)(nf
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where ciσ and fiσ create electrons in the conduction
and f band, and nf

iσ = f †
iσfiσ. The conduction elec-

tron hops between nearest neighbor sites with the am-
plitude t which we use as an energy unit. The f elec-
trons with energy −∆ are hybridized through V with
the conduction electrons. The Coulomb repulsion for
the f electrons is given by U . The geometry is one-
dimensional ring with size up to L = 24. We study
this model by the finite temperature quantum Monte
Carlo method based on the grand canonical ensemble
with chemical potential µ. The filling is denoted by
ρ = ρc + ρf (ρc =

�
i,σ〈nc

i,σ〉/L, ρf =
�

i,σ〈nf
i,σ〉/L).

In order to discuss the FS, we set the filling less than
half filled (ρ ≤ 2). This brings about the negative sign
problem, which limits an accessible parameter region.
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At first, let us discuss the momentum distribution
function n(k) = nc(k) + nf (k) shown in Fig. 1. We set
the parameters as ∆ = 1, V = 0.5 and U = 2, and the
temperature is T = 0.1. Since the filling is less than
half filled (ρ � 1.8 < 2), if the Coulomb interaction is
absent, all of the electrons occupy the lower f band and
the conduction band is vacant. This corresponds to the
large FS with kF = π

2
ρ. However, with the interaction,

the f band is nearly singly occupied (ρf = 0.9) and the
remnant electrons are raised to the conduction band
showing the small FS like behavior (k′

F = π
2
(ρ− ρf) =

π
2 ρc). Figure 2 shows the temperature dependence of
the momentum distribution function. There is not ob-
served a sign of the large FS down to T = 0.05. The
apparent small FS is due to the correlation effects. In
addition, there is another reason why it is difficult to
see the large FS at a finite temperature. Since the f
electrons hops only through the hybridization V , its
band is nearly flat especially at the top of it. At a finite
temperature, this masks the clear FS structure even
for the non-interacting case.
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Fig. 1. The momentum distribution function at the tempera-

ture T = 0.2.

In order to determine locus of the FS, it is helpful to
calculate the momentum-resolved compressibility de-
fined by κ(k) = dn(k)

dµ
[5]. It measures the effects of an

infinitesimal doping and shows a peak structure at FS.
Figure 3 shows the momentum-resolved compressibil-
ity for the parameters as same as Fig. 2. Although the
momentum distribution function itself does not show
the singularity at the large FS, the peak structure ap-
pears at the large FS(kF = π

2
ρ) besides the small one

(k′
F = π

2
ρc) in the momentum-resolved compressibility

κ(k). Due to the numerical difficulties, it is hard to see
the fate of these two types of peaks at T = 0. However,
our results are consistent with the existence of a sin-
gularity at the large FS, which supports the Luttinger
sum rule in the periodic Anderson model. Detailed dis-
cussions will be given elsewhere.
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Fig. 2. The temperature dependence of momentum distribution

function. The filling is ρ � 1.8.
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Fig. 3. The temperature dependence of momentum-resolved

compressibility. The filling is ρ � 1.8.
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