

Thermal expansion measurement under pressure of UGe₂

Yasuhide Ushida¹, Hiroyuki Nakane, Takashi Nishioka, Gaku Motoyama,
Setsushi Nakamura, Noriaki K. Sato

Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan

Abstract

Volume expansion measurements of single crystalline UGe₂ samples have been made under pressure. The linear coefficient $\alpha_V(T)$ at ambient pressure shows a broad hump at around $T_x \sim 25$ K and a sharp transition at $T_C = 52$ K. We have observed that the anomaly in $\Delta\alpha_V$ at T_x becomes prominent and increases in magnitude with increasing pressure.

Key words: thermal expansion; high pressure; UGe₂; superconductivity

The ferromagnet UGe₂ has a Curie temperature $T_C \simeq 52$ K at ambient pressure, and T_C decreases with increasing pressure[1]. Recently, superconductivity was observed in the pressure range between 1.0 and 1.6 GPa, with a maximum superconducting transition temperature of ~ 0.8 K at about 1.2 GPa[2]. The interesting is that UGe₂ is still in the ferromagnetic phase in this pressure range. In addition to these phase transitions, an anomaly was observed at $T_x \sim 25$ K at ambient pressure, and it was argued that "fluctuations" relevant to this anomaly may play an essential role in the mechanism of the superconductivity[3-6]. In our previous paper[7], we have found that the temperature dependence of dc magnetization shows an upturn around T_x under pressure, which becomes prominent with increasing pressure. In this paper, we present results of the thermal expansion measurement, particularly concentrating on a temperature region around T_x .

Single crystalline samples of UGe₂ were grown by the Czochralski method using a tetra-arc furnace. The thermal expansion measurements were made with a Be-Cu clamp cell. A mixture of Flourenert FC70 and FC77 was used as pressure-transmitting medium. A

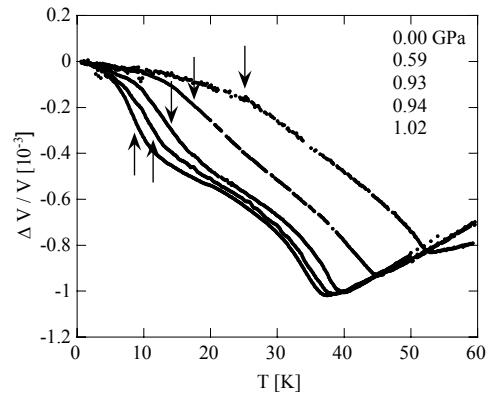


Fig. 1. Volume thermal expansion $\Delta V/V$ as a function of temperature. T_x denoted by an arrow shifts to the lower temperature side and the hump at T_x becomes prominent with increasing pressure.

pressure at low temperatures was determined from the pressure dependence of superconducting transition temperatures of In and Pb with an estimated accuracy of ± 0.03 GPa by measuring the ac magnetic susceptibility. Thermal expansion $(\Delta l/l)_i$ ($i = a, b, c$) was measured in the temperature range between 1.0 and 60 K by means of strain gauge method. Copper was used as a reference material. We calculate the volume expansion $\Delta V/V$ as a function of temperature via the

¹ Corresponding author. Present address: Toyoda Gosei Co., Ltd., Nishikasugai, Aichi ken, 452-8564, Japan. E-mail: ushida@iyo.pays.nagoya-u.ac.us

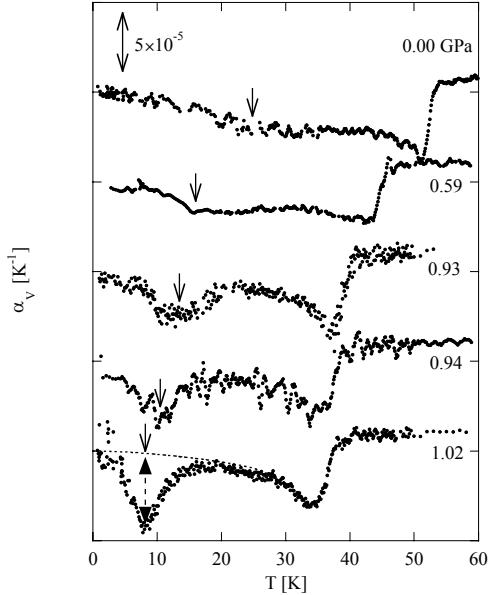


Fig. 2. Volume expansion coefficient α_v as a function of temperature. The "peak height" at T_x is shown as a broken arrow.

following relation:

$$\frac{\Delta V}{V} = \left(\frac{\Delta l}{l}\right)_a + \left(\frac{\Delta l}{l}\right)_b + \left(\frac{\Delta l}{l}\right)_c.$$

Figure 1 shows the temperature dependence of $\Delta V/V$. In addition to a sharp transition at $T_C \simeq 52$ K, corresponding to the Curie temperature, we observed a weak anomaly at $T_x \sim 29$ K at ambient pressure, although it is difficult to determine the temperature definitively from this figure (see Fig. 2). This anomaly at T_x becomes evident and moves to the lower temperature side with increasing pressure. This feature around T_x may resemble that of the dc magnetization[7].

Figure 2 shows the temperature dependence of the volume expansion coefficient α_v . Corresponding to the results given in Fig. 1, the anomaly at T_x shifts to the lower temperature side and sharpens with increasing pressure. We evaluated the "peak height" of $\Delta\alpha_v$ at T_x as indicated by a broken arrow, and also estimated the "half width of the peak" ΔT_x .

Figure 3 shows the pressure dependence of (a) T_C and T_x , (b) $\Delta\alpha_v$ and ΔT_x and (c) $\Delta C/T_x$. Here a "jump" of the specific heat ΔC corresponding to $\Delta\alpha_v$ was estimated via the following equation, assuming that the anomaly corresponds to a second-order transition,

$$\frac{dT_x}{dP} = \frac{\Delta\alpha_v}{(\Delta C/T_x)}.$$

We clearly observe that $\Delta\alpha_v$ increases but ΔT_x decreases with increasing pressure. We also note that $\Delta C/T_x$ seems to be independent of pressure. However,

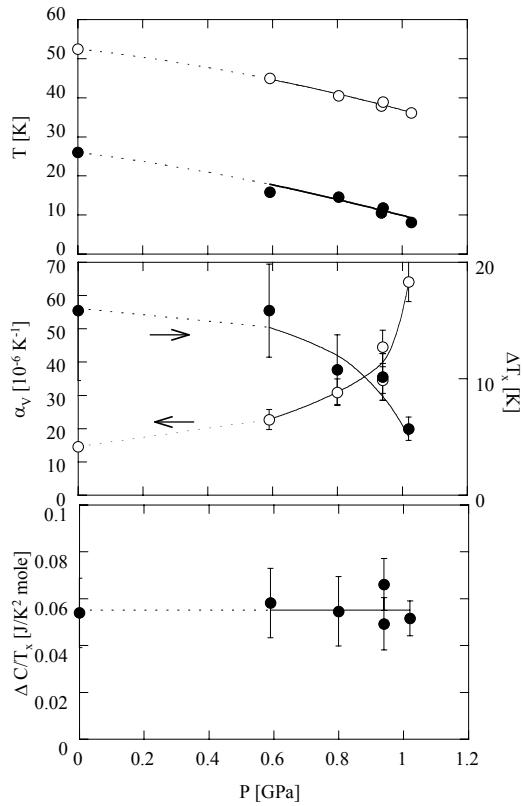


Fig. 3. Pressure dependence of (a) T_C (\circ) and T_x (\bullet), (b) $\Delta\alpha_v$ (\circ) and ΔT_x (\bullet), and (c) $\Delta C/T_x$ (\bullet).

any sharp anomaly has not been observed in the heat capacity at ambient pressure[3], and thus we conjecture that the observed hump in the heat capacity corresponds to this anomaly that is broadened by some effect.

References

- [1] G. Oomi, T. Kagayama and Y. Onuki, *J. Alloys Compd.* **271-273** (1998) 482.
- [2] S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W. Hasselwimmer, M. J. Steiner, E. Pugh, I. R. Walker, S. R. Julian, P. Monthough, G. G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite and J. Flouquet, *Nature* **406** (2000) 587.
- [3] A. Huxley, I. Sheikin, E. Ressouche, N. Kernavanois, D. Braithwaite, R. Calemczuk and J. Flouquet, *Phys. Rev. B* **63** (2001) 144519.
- [4] N. Tateiwa, T. C. Kobayashi, K. Hanazono, K. Amaya, Y. Haga, R. Settai and Y. Onuki, *J. Phys. Cond. Matter.* **13** (2001) L17.
- [5] E. D. Bauer, R. P. Dickey, V. Z. Zapf and M. B. Maple, *J. Phys. Cond. Matter.* **13** (2001) L759.
- [6] S. Watanabe and K. Miyake, *Physica B* (to be published).

[7] G. Motoyama, S. Nakamura, H. Kadoya, T. Nishioka and N. K. Sato, Phys. Rev. B. **65** (2001) 20510.