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Abstract

We analyse the behavior of the density of states in a singlet s-wave superconductor with weak magnetic impurities
in the clean limit by using the method of optimal fluctuation. We show that the density of states varies as In N(E)
—|F - Ao|(7_d)/ 4 near the mean field gap edge Ay in a d-dimensional superconductor. The optimal fluctuation in
d > 1 is strongly anisotropic. We compare the density of states with that obtained in other recent approaches.
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Studies of spectral properties of disordered super-
conductors remain an active area of research as they
help advance our understanding of the competition
between disorder and interactions. Recent years wit-
nessed a renewed interest in the behavior of the density
of states (DOS) in singlet s-wave superconductors with
magnetic impurities. Such impurities are pairbreaking,
and are characterized, in the weak scattering limit, by
the spin flip scattering time, 7,. In the self-consistent
Born approximation (SCB) [1], the dimensionless pa-
rameter controlling the suppression of the single parti-
cle spectral gap, Ao, is A71s, where A is the amplitude
of the superconducting order parameter. In this paper
we consider the clean limit, A7s > 1, where the SCB
approach yields a finite spectral gap, Ao ~ A, with the
DOS N(E) =0 at energies E < Ag.

It was argued in Ref.[2] that rare regions where lo-
cal impurity concentration is high enough to locally
destroy superconductivity lead to a finite density of
states at the Fermi level. The argument was similar to
the method of optimal fluctuation (OF), well known
from studies of doped semiconductors [3]: in averaging
over all the realizations of the impurity distribution,
the probability of finding the realization which locally
destroys the gap determines the residual DOS. Later,
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Lamacraft and Simons [4] considered in detail the en-
ergy dependence of the DOS below the mean field gap
in a dirty superconductor, where the scattering rate
due to potential scattering greatly exceeds the spin-flip
pairbreaking scattering rate, 1/7s.

Very recently we analysed the subgap DOS in a clean
s-wave superconductor, where the spin-flip scattering
is dominant [5]; we argued that at least in some cases
this limit is relevant experimentally. Here we briefly re-
view the results of Ref.[5] and then present a more de-
tailed comparison of the DOS obtained in Refs.[2,4,5].

We consider a mean field hamiltonian

H =&+ Alr)rios + U, (1)

where Z: —V2/(2m) — p, p is the chemical potential,
7; and o; are the Pauli matrices in the particle-hole and
the spin space respectively. The potential due to mag-
netic impurities U = U(r) - s, where s is the electron
spin operator, U(r) = ). JSid(r — r;), J is the ex-
change constant, and S; is the impurity spin at a site 4.

For an energy, E < Ap, OF is the most probable
configuration of impurities that creates a state at E,
and therefore contributes the most to the DOS [3]. OF
provides nonperturbative corrections to the DOS de-
termined in the framework of SCB. In essentially all the
energy range below the gap the size of the OF is signif-
icantly greater than the distance between impurities,
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so that the exact impurity potential can be replaced by
a smooth function, and its probability density is well
approximated by a Gaussian [3] with a width U§ =
Nimpd 2S(S+1)/3, so that 7, 1 = 2nNoUZ, where nim,p
is the impurity concentration, and Ny is the normal
state DOS. The DOS is then given by In [N (E)/No] =
—S[Uopt], where S[U,y] is obtained by minimizing

S[u] = ﬁ / drUR (r) + A(E[U] _ E> )

with respect to both the potential U and the Lagrange

multiplier A. We find OF to be ferromagnetic [5], so

that BE[U] = (¥|&rs + Ao + U|¥) where W is the

normalized spinor wave function of the particle in the

OF, and U(z) = =AU (¥*(2)¥(z)) is now scalar.
Ind=1 we find (e = |E|/Ao)

U) _ 1-¢ 3)
2A¢ € + cosh(2zv/1 — €2/&) 7

So = S[Uopt] = 8m(AoTs) [\/ 1 — €2 — earccos e} , (4)

where &g = vr /Ay is the coherence length and vr is the
Fermi velocity. The size of the OF, L, ~ & /v/1 — €2 >
&o, and the depth of the potential |U| < 2A¢. In partic-
ular, near the gap edge, 1 —e < 1, when |U| < Ag and
Ly > &, we find So ~ (87/3)(A07s)(1 — €2)3/2, which
allows for a simple interpretation. In an OF of depth
U and size L, the energy of the bound state is ' ~
U+ Ao +v%/L2 Ao, subject to optimization of Eq.(2).
This means |E — Ag| ~ v3/L2A¢ ~ |U|, from which
an estimate for So ~ L,U?/UZ ~ (Ag7s)(1 — €2)3/2
follows immediately.

Ind > 1 and for 1 — ¢ < 1 we must compare the ac-
tion for the isotropic OF with L ~ &/+/1 — €2 (when
kinetic energy is vp/L), and for an anisotropic OF with
L, ~ L, and transverse size L; ~ (Lz/kr)'/? (corre-
sponding to a wave function ¥(r) = exp(ikrz)®(z,y),
where @ is a slowly varying function, so that
1/(mL?) ~ vr/Lz). The anisotropic OF is favored by
a factor (Ep/Ao) 4~ 1/2(1 — )~ (@=D/4 and gives [5]

L U? E L 7—d
d—1 F 7—d
So =~ L.L; 7] ~ (AoTs) (A_o) 1—e)T . (5)

We now compare this result with that of Ref.[4]
for the diffusive propagation of the states within
OF. It is clear that even in the clean case consid-
ered here, with dilute magnetic impurities, a transi-
tion to the diffusive regime occurs when the size of
OF L > vprs, or 1 —e < (Ap7s)”2. In our nota-
tions the result of Ref.[4] for Ag7s > 1 reads Sp =
(Ao7s)%3(Er/Ag)? (1 — ¢)(6=D/4 Consequently, at
the crossover point the action from Eq. (5) is smaller,
Sp/So =~ (Er/Ao) 4 D/2(Ag7:)7/® > 1, and the OF
found here corresponds to a greater DOS. As the size

of the OF increases even further, the anisotropic fluc-
tuation becomes insupportable due to diffusive mo-
tion. Nonetheless, even for an isotropic fluctuation, we
find Sp/Siso = (Ao7s)?/3(1 — €)@=2/4 which, at the
crossover, gives (Ag7s)1073D/6 5 1 for d < 3. Con-
sequently, the OF discussed here still yields a higher
DOS than that for purely diffusive motion. There-
fore we expect that the structure of the OF near the
crossover between the ballistic and diffusive regimes
still resembles closely that given by us above, and that
our results remain at least qualitatively valid there.

Balatsky and Trugman [2] considered only the DOS
at & = 0, where they needed a large volume fluctua-
tion, V > £%, which is less probable and yields lower
DOS than that of Eq. (5). However, in the same spirit
we should investigate whether local suppression of the
gap from Ag to E due to a large number of impurities
with uncorrelatedspins (as opposed to a ferromagnetic
OF above) is advantageous. For 1 — e < 1 the local
pairbreaking rate, v, needed to reduce the gap to F is
¥7s & 14 (1 — €)(Ao7s)?/®, and the volume of the re-
gion has to be at least equal to that of the anisotropic
OF to avoid high kinetic energy cost (this is an under-
estimate since it ignores proximity coupling to bulk).
In that case we obtain the optimal action Spr/So =~
(Ao7s)Y3(Er/Ao)E, where & = nimpA} is the atomic
concentration of impurity atoms. As a result, for real-
istic values of ¢ and clean samples Sgr > S, and the
DOS given by the action in Eq.(5) is higher.

We conclude that the action obtained in our ap-
proach gives the most optimal fluctuation and the high-
est DOS compared to other analyses.
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