Characterization of fractals with an adsorbed superfluid film
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Abstract

The tortuosity of a capillary-condensed film of superfluid *He adsorbed on 91%-porous silica aerogel has been
measured, with transverse sound, as a function of helium coverage. Complementary data from *He adsorption
isotherms and small-angle X-ray scattering have also been used for substrate characterization. The tortuosity is
found to be roughly inversely proportional to the volume fraction of the liquid phase of helium.
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1. Introduction

We report an attempt to develop a new tool to gain
information on the microscopic structure of porous ma-
terials. The idea is to measure how the tortuosity of
an adsorbed liquid film changes with the liquid volume
fraction. Thin films follow all irregularities of the tortu-
ous substrate, while with thicker films the short length
scale irregularities are shunted by the liquid capillary
condensed in small pores. The scaling of the tortuos-
ity with the size of the biggest filled pore or volume of
adsorbed liquid could work as an independent fractal
characteristic of the material.

We studied a sample of 91%-porous silica aerogel
made by Airglass, Sweden. Small angle X-ray scatter-
ing revealed a range of mass fractal correlations be-
tween the scattering vectors ¢ = 0.02 A~ and 0.06 A~*
(i. e. between length scales of order ~ 7/¢ = 50 A and
150 A) with the fractal dimension of 2.0.

The tortuosity, «, is the geometric factor in the so-
lution of the equation for flow of liquid along a tortu-
ous flow path [1,2]. For superfluid *He in porous ma-
terials it is usually expressed by the “drag factor” [3],
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x =1—a~!, and can be used to characterize the mor-
phology of capillary-condensed films [4].

We consider sufficiently thick films for which the
chemical potential p is dominated by the surface ten-
sion. On the surface of a film of curvature 2/r,
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where o = 0.3 erg/cm? is the *He surface tension, vq =
27.5 cm®/ N4 is the “He atomic volume, pp is the chem-
ical potential of bulk liquid and po is SVP at T'. Hence,
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When (while filling up) the gas pressure increased up
to p, all pores of radius smaller than r(p) are full, while
the bigger pores are only covered by a thin van der
Waals film. The majority of the liquid is in the filled
pores, and the overall density of helium scales with r
between 25 A and 75 A (Fig. 1).

2. Experimental results and discussion

Transverse sound resonance in a thin slab of aerogel
[5] was used to extract the overall coupled density of
helium p, (T') from the resonant frequency v(T'). All
adsorbed helium is divided into two parts: the inert
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Fig. 1. *He adsorption isotherm at T' = 2.2 K: overall density
of adsorbed *He vs. its chemical potential. The cross-over from
the van der Waals to the capillary condensation regime is
seen at overall density 0.025 g/cm3. For the latter regime the
chemical potential corresponds to the “radius of the largest
filled pores” r(p) (top axis). Straight lines guide the eye.

solid layer of overall density po = 0.010 g/cm® (using
the “ critical coverage” value of n. = 36 pmol/m? for
91%-porous aerogel [6]) and the liquid part with overall
density pi = ¢pp, where ¢ is the volume fraction of
the liquid part and pp = 0.146 g/cm?® is the bulk *He
density. At T' = 2.2K all the helium mass is coupled
to the oscillating aerogel, while at 7" = 0.5 K all the
liquid part is superfluid and coupled to the aerogel only
through the tortuosity of the film. Hence,
pu(05K) —po)
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In Fig. 2 we plot our values of tortuosity a(¢) for
the capillary-condensed regime when p,(2.2K) >
0.025 g/cm?® (i. e. for ¢ > 0.1) as well as some of the
data obtained by Dolesi et al. [7] for *“He at T = 1.25 K
in 93.5%-porous silica aerogel from the same manufac-
turer. The latter were re-analyzed to account for the
inert layer using the value po = 0.007 g/cm® obtained
from our value of 0.010 g/cm?® by scaling with the aero-
gel density. Both data sets are in good agreement and
follow the law o = ¢~ € with € ~ 1.16. For comparison,
the results for *He saturated in non-fractal porous
media (fused-glass beads [2] and packed powders [8])
of various porosities are shown too. It is clear that the
tortuosity of films on aerogels differs markedly from
that of helium in non-fractal porous media.

The solid lines in Fig. 2 show the calculated val-
ues of a for liquid in a model medium constructed by
nested infinitesimal increments of density of self-similar
spheres or needles [1] predicting the exponents between
€ = 1/2 and € = 1. Other theories for the density de-
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Fig. 2. Tortuosity vs liquid filling fraction: (e) our data; (o)
data for 93.5%-porous aerogel [7]. Saturated samples of dif-
ferent porosities: (x) fused-glass bead samples [2], (+) packed
powder samples [8]. Solid lines — effective-medium theory for
saturated porous media [1]: (¢ = 1) self-similar needles per-
pendicular to flow, (e = 2/3) self-similar needles randomly ori-
ented, (e = 1/2) self-similar spheres. Dotted line — fit to our
data with € = 1.16.

pendence of the tortuosity or conductivity of random or
fractal networks exist, usually predicting € > 1. How-
ever, much smaller substrate-dependent values of € for
the tortuosity of a capillary-condensed film on surface
fractals have been predicted as well [9,10]. We would
like to know whether or not the power law with the
€ ~ 1.16 is universal for different types of aerogel or
other porous mass fractals. Further experiments and
model calculations are under way.
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